期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种域增强和域自适应的换衣行人重识别范式
1
作者 张培煦 胡冠宇 杨新宇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2023年第5期87-94,共8页
为了解决服装变化对行人重识别模型识别人物身份准确率的影响,提出一个基于域增强和域自适应的换衣行人重识别范式,使模型在不同的域中学习通用鲁棒的身份表示特征。首先设计了一种服装语义感知的域数据增强方法,根据人体语义信息,在不... 为了解决服装变化对行人重识别模型识别人物身份准确率的影响,提出一个基于域增强和域自适应的换衣行人重识别范式,使模型在不同的域中学习通用鲁棒的身份表示特征。首先设计了一种服装语义感知的域数据增强方法,根据人体语义信息,在不改变目标人物身份的情况下,分别改变样本衣服裤子的颜色,生成同人同衣不同色的域数据,填补换衣数据域单一问题;其次设计了一个多正类域自适应损失函数,该函数根据不同域数据在模型训练中所做出贡献的不同,为多正类数据损失赋予不同权重,迫使模型专注于样本的通用身份特征的学习。实验证明,在不影响非换衣行人重识别准确度的情况下,该方法在PRCC和CCVID换衣数据集上的首位命中率和平均精度均值达到了约59.5%、60.0%和88.0%、84.5%。对比于其他方法,这种方法具有更高的准确率和更强的鲁棒性,显著提高了模型识别换衣行人的能力。 展开更多
关键词 人工智能 计算机视觉 行人重识别 域自适应 数据增强
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部