Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to qu...Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to question.In this study,through density functional theoretical calculations,we first illustrate that the intrinsic activity of pyrrolic N is high enough for effectively catalyzing CO_(2)RR,however,due to the interplay with the neighboring pyridinic N sites,the activity of pyrrolic N is dramatically suppressed.Then,experimentally,metal‐free N‐doped carbon spheres(NCS)electrocatalysts without significant pyridinic N content are prepared for CO_(2)RR.The pyrrolic N in NCS shows a direct‐positive correlation with the performance for CO_(2)RR,representing the active center with high activity.The optimum NCS could produce syngas with a wide range of CO/H_(2) ratio(0.09 to 12)in CO_(2)RR depending on the applied potential,meanwhile,the best selectivity of 71%for CO can be obtained.Intentionally adding a small amount of pyridinic N to the optimum NCS dramatically decreases the activity for CO_(2)RR,further verifying the suppressed activity of pyrrolic N sites by the neighboring pyridinic N sites.This work reveals the interaction between a variety of N species in N‐doped carbon,and the potential of pyrrolic N as the new type of active site for electrocatalysts,which can improve our understanding of the electrocatalysis mechanism and be helpful for the rational design of high‐efficient electrocatalysts.展开更多
文摘Pyridinic N is widely regarded as the active center while pyrrolic N has low‐activity in metal‐free N‐doped carbon for electrocatalytic CO_(2) reduction reaction(CO_(2)RR)to CO,but this viewpoint remains open to question.In this study,through density functional theoretical calculations,we first illustrate that the intrinsic activity of pyrrolic N is high enough for effectively catalyzing CO_(2)RR,however,due to the interplay with the neighboring pyridinic N sites,the activity of pyrrolic N is dramatically suppressed.Then,experimentally,metal‐free N‐doped carbon spheres(NCS)electrocatalysts without significant pyridinic N content are prepared for CO_(2)RR.The pyrrolic N in NCS shows a direct‐positive correlation with the performance for CO_(2)RR,representing the active center with high activity.The optimum NCS could produce syngas with a wide range of CO/H_(2) ratio(0.09 to 12)in CO_(2)RR depending on the applied potential,meanwhile,the best selectivity of 71%for CO can be obtained.Intentionally adding a small amount of pyridinic N to the optimum NCS dramatically decreases the activity for CO_(2)RR,further verifying the suppressed activity of pyrrolic N sites by the neighboring pyridinic N sites.This work reveals the interaction between a variety of N species in N‐doped carbon,and the potential of pyrrolic N as the new type of active site for electrocatalysts,which can improve our understanding of the electrocatalysis mechanism and be helpful for the rational design of high‐efficient electrocatalysts.