The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the...The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the thermal decomposition temperature to about 200℃, which is helpful to its application in optical and magneto-optical storage. This paper fits its optical constants in terms of a general oscillator model by using measured ellipsometric parameters. The fitted oscillator energy 2.487 eV is close to the optical direct interband transition energy value of the Ag2O film determined by Tauc equation; whereas, the fitted oscillator energy 4.249 eV is far from the fitted plasma oscillator energy 4.756 eV by single-oscillator energy. The photoluminescence spectrum centred at about 2.31 eV indicates a direct-energy gap photoluminescence mechanism of the Ag2O film.展开更多
Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature ...Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.展开更多
This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18...This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.展开更多
(111) preferentially oriented Ag2O film deposited by direct current reactive magnetron sputtering is annealed by rapid thermal processing at different annealing temperatures for 5 min. The film microstructure and op...(111) preferentially oriented Ag2O film deposited by direct current reactive magnetron sputtering is annealed by rapid thermal processing at different annealing temperatures for 5 min. The film microstructure and optical properties are then characterized by x-ray diffractometry, scanning electron microscopy, and spectrophotometry, respectively. The results indicate that no clear Ag diffraction peak is discernable in the Ag2O film annealed below 200°C. In comparison, the Ag2O film annealed at 200°C begins to exhibit characteristic Ag diffraction peaks, and in particular the Ag2O film annealed at 250°C can demonstrate enhanced Ag diffraction peaks. This implies that the threshold of the thermal decomposition reaction to produce Ag particles is approximately 200°C for the Ag2O film. In addition, an evolution of the film surface morphology from compact and pyramid-like to a rough and porous structure clearly occurred with increasing annealing temperature. The porous structure might be attributable to the escape of the oxygen produced during annealing, while the rough surface might originate from the reconstruction of the surface. The dispersion of interference peak intensity in the reflectance and transmission spectra could be attributed to the Ag particles produced. The lowered crystallinity and Ag particles produced induce a lattice defect, which results in an enhanced transmissivity in the violet region and a weakened transmissivity in the infrared region.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.60807001)Foundation of Henan Educational Committee (Grant No.2010A140017)
文摘The Ag2O film, as-dcposited by direct-current magnetron reactive sputtering at a substrate temperature of 150 ℃, clearly shows a preferential orientation (111), and is capable of lowering the threshold value of the thermal decomposition temperature to about 200℃, which is helpful to its application in optical and magneto-optical storage. This paper fits its optical constants in terms of a general oscillator model by using measured ellipsometric parameters. The fitted oscillator energy 2.487 eV is close to the optical direct interband transition energy value of the Ag2O film determined by Tauc equation; whereas, the fitted oscillator energy 4.249 eV is far from the fitted plasma oscillator energy 4.756 eV by single-oscillator energy. The photoluminescence spectrum centred at about 2.31 eV indicates a direct-energy gap photoluminescence mechanism of the Ag2O film.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60807001)the Foundation of Henan Educational Committee,China (Grant No. 2010A140017)the National Basic Research Program of China (Grant No. 2011CB201605)
文摘Using a radio-frequency reactive magnetron sputtering technique, a series of the single-phased Ag20 films are deposited in a mixture of oxygen and argon gas with a flow ratio of 2:3 by changing substrate temperature (Ts). Effects of the Ts on the microstructure and optical properties of the films are investigated by using X-ray diffractometry, scanning electron microscopy and spectrophotometry. The single-phased Ag20 films deposited at values of Ts below 200℃ are (111) preferentially oriented, which may be due to the smallest free energy of the (111) crystalline face. The film crystallization becomes poor as the value of Ts increases from 100℃ to 225℃. In particular, the Ag20 film deposited at Ts=225℃ loses the (111) preferential orientation. Correspondingly, the film surface morphology obviously evolves from a uniform and compact surface structure to a loose and gullied surface structure. With the increase of Ts value, the transmissivity and the reflectivity of the films in the transparent region are gradually reduced, while the absorptivity gradually increases, which may be attributed to an evolution of the crystalline structure and the surface morphology of the films.
基金supported by the National Natural Science Foundation of China (Grant No. 60807001)the National Basic Research Program of China (Grant No. 2011CB201605)the Foundation of Henan Educational Committee (Grant No. 2010A140017)
文摘This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP.
基金Supported by the National Natural Science Foundation of China under Grant No 60807001, and Graduate Innovation Foundation of Zhengzhou University (No A 196)
文摘(111) preferentially oriented Ag2O film deposited by direct current reactive magnetron sputtering is annealed by rapid thermal processing at different annealing temperatures for 5 min. The film microstructure and optical properties are then characterized by x-ray diffractometry, scanning electron microscopy, and spectrophotometry, respectively. The results indicate that no clear Ag diffraction peak is discernable in the Ag2O film annealed below 200°C. In comparison, the Ag2O film annealed at 200°C begins to exhibit characteristic Ag diffraction peaks, and in particular the Ag2O film annealed at 250°C can demonstrate enhanced Ag diffraction peaks. This implies that the threshold of the thermal decomposition reaction to produce Ag particles is approximately 200°C for the Ag2O film. In addition, an evolution of the film surface morphology from compact and pyramid-like to a rough and porous structure clearly occurred with increasing annealing temperature. The porous structure might be attributable to the escape of the oxygen produced during annealing, while the rough surface might originate from the reconstruction of the surface. The dispersion of interference peak intensity in the reflectance and transmission spectra could be attributed to the Ag particles produced. The lowered crystallinity and Ag particles produced induce a lattice defect, which results in an enhanced transmissivity in the violet region and a weakened transmissivity in the infrared region.