MoS_(2)的理论比容量高(670 mAh g^(-1)),层间距大,有利于钠离子的嵌入脱出,但由于充放电过程中会不可避免地产生体积膨胀进而造成堆叠,导致容量衰减。合成超小MoS_(2)片与碳材料复合可以有效解决MoS_(2)充放电过程中产生的堆叠问题。...MoS_(2)的理论比容量高(670 mAh g^(-1)),层间距大,有利于钠离子的嵌入脱出,但由于充放电过程中会不可避免地产生体积膨胀进而造成堆叠,导致容量衰减。合成超小MoS_(2)片与碳材料复合可以有效解决MoS_(2)充放电过程中产生的堆叠问题。本工作利用粗酞菁作为前驱体,成功地合成出锚定在3D纳米碳上的超薄MoS_(2).少层的MoS_(2)提供了更多的空间,缓解了钠离子嵌入脱出引起的体积膨胀,并且当固定在碳材料上时,MoS_(2)的(002)层间距提高到了0.67 nm.此外,所得的材料在0.1 C循环200圈后仍能保持356 mAh g^(-1)的比容量,库伦效率保持在99.8%.展开更多
文摘MoS_(2)的理论比容量高(670 mAh g^(-1)),层间距大,有利于钠离子的嵌入脱出,但由于充放电过程中会不可避免地产生体积膨胀进而造成堆叠,导致容量衰减。合成超小MoS_(2)片与碳材料复合可以有效解决MoS_(2)充放电过程中产生的堆叠问题。本工作利用粗酞菁作为前驱体,成功地合成出锚定在3D纳米碳上的超薄MoS_(2).少层的MoS_(2)提供了更多的空间,缓解了钠离子嵌入脱出引起的体积膨胀,并且当固定在碳材料上时,MoS_(2)的(002)层间距提高到了0.67 nm.此外,所得的材料在0.1 C循环200圈后仍能保持356 mAh g^(-1)的比容量,库伦效率保持在99.8%.