针对无法有效利用脑电通道拓扑结构学习更有鉴别性的脑电特征问题,本文基于长短期记忆网络和图卷积神经网络,提出动态图卷积联合记忆网络(Dynamic Graph Convolutional Joint Long Short Term Memory Network,DGCJMN)方法。首先将脑电...针对无法有效利用脑电通道拓扑结构学习更有鉴别性的脑电特征问题,本文基于长短期记忆网络和图卷积神经网络,提出动态图卷积联合记忆网络(Dynamic Graph Convolutional Joint Long Short Term Memory Network,DGCJMN)方法。首先将脑电通道作为图的节点,微分熵作为节点特征,利用动态参数学习最优的脑电通道拓扑结构,构建特征图;之后,由图卷积神经网络提取图域特征,并结合长短期记忆网络和池化进一步提取特征;最后将图卷积网络、长短期记忆网络和池化提取的特征融合后进行情绪分类。所提方法在SEED数据集上针对积极、中性和消极3种情绪取得的平均准确率为95.93%,精确率、召回率和F1值分别为96.11%、95.93%和0.96,Kappa系数为0.939。混淆矩阵表明,模型对于3种情绪都达到了较好的分类效果。展开更多
文摘针对无法有效利用脑电通道拓扑结构学习更有鉴别性的脑电特征问题,本文基于长短期记忆网络和图卷积神经网络,提出动态图卷积联合记忆网络(Dynamic Graph Convolutional Joint Long Short Term Memory Network,DGCJMN)方法。首先将脑电通道作为图的节点,微分熵作为节点特征,利用动态参数学习最优的脑电通道拓扑结构,构建特征图;之后,由图卷积神经网络提取图域特征,并结合长短期记忆网络和池化进一步提取特征;最后将图卷积网络、长短期记忆网络和池化提取的特征融合后进行情绪分类。所提方法在SEED数据集上针对积极、中性和消极3种情绪取得的平均准确率为95.93%,精确率、召回率和F1值分别为96.11%、95.93%和0.96,Kappa系数为0.939。混淆矩阵表明,模型对于3种情绪都达到了较好的分类效果。