期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
不同分级方法对区域滑坡易发性区划的影响 被引量:1
1
作者 黄发明 张崟琅 +2 位作者 郭子正 范宣梅 周创兵 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第1期148-159,共12页
易发性分区是开展区域地质灾害风险评价的基础步骤,选取合理的分级方法对有效绘制区域滑坡易发性图意义显著,但鲜有研究对比了各易发性分级方法的优缺点,尤其是未能将历史滑坡与预测出的易发性指数相联接。针对该问题,以陕西省延长县为... 易发性分区是开展区域地质灾害风险评价的基础步骤,选取合理的分级方法对有效绘制区域滑坡易发性图意义显著,但鲜有研究对比了各易发性分级方法的优缺点,尤其是未能将历史滑坡与预测出的易发性指数相联接。针对该问题,以陕西省延长县为例采用3种机器学习模型计算滑坡易发性指数,即分类和回归树、随机森林和径向基函数;设计了5种易发性分级方法,划分不同的滑坡易发性等级,包括4种常规的基于地理信息系统的分级方法(自然断点、等间隔、分位数和几何间隔),同时考虑了滑坡与易发性指数间的非线性关联性的频率比阈值法。结果表明:3种模型的受试者工作特征(ROC)曲线下面积均大于0.75,但划分的易发性分级图分布模式却存在较大差异,使用几何间隔和分位数法的易发性图能在极高易发区中识别出更多滑坡,但这两种方法划分的极高和高易发区的总面积过大;使用等间隔法和频率比阈值法在极高和高易发区中的滑坡比率更大,说明识别出的滑坡更为集中。本文提出的频率比阈值法用于滑坡易发性分级,能为易发性的准确分区提供思路,为边坡稳定性较差区域的工程选址以及土地利用规划提供科学参考,提高地质安全评估及应急管理能力。 展开更多
关键词 滑坡易发性 易发性分级 频率比阈值法 机器学习
下载PDF
基于多尺度分割方法的斜坡单元划分及滑坡易发性预测 被引量:12
2
作者 常志璐 黄发明 +3 位作者 蒋水华 张崟琅 周创兵 黄劲松 《工程科学与技术》 EI CSCD 北大核心 2023年第1期184-195,共12页
滑坡易发性预测可以有效预测潜在滑坡的空间位置,是滑坡危险性和风险性评价的基础。由于斜坡单元依据真实地形地貌划分和具有明确的地质特征意义,更多的学者尝试利用斜坡单元进行区域滑坡易发性预测。但是,如何高效准确地划分斜坡单元... 滑坡易发性预测可以有效预测潜在滑坡的空间位置,是滑坡危险性和风险性评价的基础。由于斜坡单元依据真实地形地貌划分和具有明确的地质特征意义,更多的学者尝试利用斜坡单元进行区域滑坡易发性预测。但是,如何高效准确地划分斜坡单元并考虑其内部环境因子的非均质性是制约斜坡单元应用的关键因素,也是目前研究中的难点。本文以江西省崇义县为例,首先,提取研究区域坡向和山体阴影图作为基础数据,采用多尺度分割(MSS)方法划分斜坡单元,并结合试错法和研究区域历史滑坡形态特征确定MSS方法的最优参数组合。然后,基于斜坡单元提取高程、坡度、剖面曲率等环境因子,分别导入支持向量机(SVM)和逻辑回归(LR)模型,构建Slope–SVM/LR易发性预测模型。通过变化值和标准差表征斜坡单元内部环境因子的非均质性,进而构建Variant Slope–SVM/LR易发性预测模型。最后,采用ROC曲线和频率比精度分析上述模型的预测精度。结果表明:1)当尺度、形状特征权重和紧致度权重参数分别取20、0.8和0.8时,研究区域斜坡单元的划分效果最好;2)Slope–SVM、Variant slope–SVM、Slope–LR和Variant slope–LR模型的ROC精度分别为0.812、0.876、0.818和0.839,相应的频率比精度分别为0.780、0.866、0.792和0.865,说明Variant slope–SVM/LR模型的预测精度高于Slope–SVM/LR模型。因此,MSS方法可以实现高效准确地自动划分斜坡单元,考虑斜坡单元内部环境因子的非均质性可以提高易发性预测结果的准确性。 展开更多
关键词 多尺度分割方法 斜坡单元 易发性预测 非均质性
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部