Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop...Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop novel and efficient catalysts to accelerate water splitting reaction. Recently, newly emerging self-supported materials, especially three dimensional(3D) carbon substrate electrochemical catalysts, have attracted great attention benefiting from their fantastic catalytic performances, such as large surface area,enhanced conductivity, tunable porosity, and so on. This review summarizes the outstanding materials used for hydrogen evolution reaction and oxygen evolution reaction. And catalysts that acted as both anode and cathode in two-electrode systems for overall water splitting are introduced systematically. The opportunities and challenges of 3D carbon substrate materials for electrochemical water splitting are proposed.展开更多
It is of great significance to design and synthesize highly efficient n-type organic small molecules as electron-transporting layer(ETL) materials to achieve high performance planar perovskite solar cells(PVKSCs) with...It is of great significance to design and synthesize highly efficient n-type organic small molecules as electron-transporting layer(ETL) materials to achieve high performance planar perovskite solar cells(PVKSCs) with lowtemperature solution-processing. In this article, acenaphthylene-imide based small molecules AI1, AI2 and AI3 were developed with lower-lying LUMO energy levels and were further applied as non-fullerene ETL materials for solutionprocessed PVKSCs. When TiO2/AIX bilayer was used as ETL,an average power conversion efficiency(PCE) of 15.0% was achieved for TiO2/AI1 based PVKSCs with conventional configuration, while pristine TiO2 based devices presented a PCE of 11.7% only. All the results demonstrate that acenaphthylene-imide derivatives could be promising ETL materials to accomplish low-temperature solution-processed high performance PVKSCs.展开更多
基金supported by the National Natural Science Foundation of China (61525402, 61775095 and 5161101159)Jiangsu Provincial Key Research and Development Plan (BE2017741)
文摘Water splitting is an important approach for energy conversion to obtain hydrogen and oxygen. Apart from solar water splitting, electrochemical method plays a key role in the booming field, and it is urgent to develop novel and efficient catalysts to accelerate water splitting reaction. Recently, newly emerging self-supported materials, especially three dimensional(3D) carbon substrate electrochemical catalysts, have attracted great attention benefiting from their fantastic catalytic performances, such as large surface area,enhanced conductivity, tunable porosity, and so on. This review summarizes the outstanding materials used for hydrogen evolution reaction and oxygen evolution reaction. And catalysts that acted as both anode and cathode in two-electrode systems for overall water splitting are introduced systematically. The opportunities and challenges of 3D carbon substrate materials for electrochemical water splitting are proposed.
基金supported by the National Natural Science Foundation of China (61604071, 61525402, 61604119, 61704131 and 61775095)Natural Science Foundation of Jiangsu Province (BK20161012)+1 种基金Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJZZ16_0139)SICAM Scholarship (38600001)
文摘It is of great significance to design and synthesize highly efficient n-type organic small molecules as electron-transporting layer(ETL) materials to achieve high performance planar perovskite solar cells(PVKSCs) with lowtemperature solution-processing. In this article, acenaphthylene-imide based small molecules AI1, AI2 and AI3 were developed with lower-lying LUMO energy levels and were further applied as non-fullerene ETL materials for solutionprocessed PVKSCs. When TiO2/AIX bilayer was used as ETL,an average power conversion efficiency(PCE) of 15.0% was achieved for TiO2/AI1 based PVKSCs with conventional configuration, while pristine TiO2 based devices presented a PCE of 11.7% only. All the results demonstrate that acenaphthylene-imide derivatives could be promising ETL materials to accomplish low-temperature solution-processed high performance PVKSCs.