期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于EMD-SSA-LSTM模型的城市轨道交通站点客流预测
1
作者 何勇 张开雯 《武汉理工大学学报(交通科学与工程版)》 2024年第5期829-834,840,共7页
文中基于EMD和SSA算法,对LSTM神经网络进行优化,提出一种新的组合预测模型.利用EMD算法降低数据噪点的干扰,将短时客流数据分解为多个IMF和一个残差.利用SSA算法优化LSTM网络的隐含层神经元个数、学习率以及迭代次数.利用优化后的LSTM... 文中基于EMD和SSA算法,对LSTM神经网络进行优化,提出一种新的组合预测模型.利用EMD算法降低数据噪点的干扰,将短时客流数据分解为多个IMF和一个残差.利用SSA算法优化LSTM网络的隐含层神经元个数、学习率以及迭代次数.利用优化后的LSTM模型对各个IMF进行预测,由各IMF的预测结果求和得到最终的预测值.利用杭州市客流量最大的站点火车东站客流量数据进行验证,并与BP神经网络、LSTM神经网络以及SSA-LSTM模型的预测结果相比较.结果表明:在针对工作日和非工作日的短时客流预测中,EMD-SSA-LSTM组合模型的预测误差均低于其他3种模型,且工作日与非工作日的预测值与真实值之间可决系数分别为0.9995,0.998,验证了本文提出的组合模型的有效性,并且提高了预测精度. 展开更多
关键词 短时客流预测 EMD和SSA算法 LSTM神经网络 组合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部