基于强化学习的方法在知识图谱补全任务中虽然具有较好的表现,但存在智能体得到的指导奖励质量偏低、关系路径判定易错等问题。为此,提出一种融合软奖励和退出机制的对抗学习推理方法(WGAN reward and exit,WGAN-RE),在生成式对抗网络...基于强化学习的方法在知识图谱补全任务中虽然具有较好的表现,但存在智能体得到的指导奖励质量偏低、关系路径判定易错等问题。为此,提出一种融合软奖励和退出机制的对抗学习推理方法(WGAN reward and exit,WGAN-RE),在生成式对抗网络中引入软奖励和动作退出机制。利用知识嵌入模型构建外部软奖励机制,增强强化学习过程中的奖励机制;利用动作退出机制对路径上的中间实体随机掩盖外向边,并强制搜索路径集,稀释无意义路径的影响。在FB15K-237和NELL-995数据集上与多种强化学习方法进行对比实验,结果表明,所提方法的路径搜索成功率最高,在事实预测和链接预测任务上其性能均有显著提升。展开更多
文摘基于强化学习的方法在知识图谱补全任务中虽然具有较好的表现,但存在智能体得到的指导奖励质量偏低、关系路径判定易错等问题。为此,提出一种融合软奖励和退出机制的对抗学习推理方法(WGAN reward and exit,WGAN-RE),在生成式对抗网络中引入软奖励和动作退出机制。利用知识嵌入模型构建外部软奖励机制,增强强化学习过程中的奖励机制;利用动作退出机制对路径上的中间实体随机掩盖外向边,并强制搜索路径集,稀释无意义路径的影响。在FB15K-237和NELL-995数据集上与多种强化学习方法进行对比实验,结果表明,所提方法的路径搜索成功率最高,在事实预测和链接预测任务上其性能均有显著提升。