固体推进剂中AP颗粒的级配不同会导致力学性能相差巨大,为了探究AP颗粒的粒度值和质量分数对端羟基聚丁二烯(HTPB)推进剂力学性能的影响规律,采用机器学习的方法对推进剂的力学性能进行仿真预测,降低了实验成本并提高了预测效率。首先,...固体推进剂中AP颗粒的级配不同会导致力学性能相差巨大,为了探究AP颗粒的粒度值和质量分数对端羟基聚丁二烯(HTPB)推进剂力学性能的影响规律,采用机器学习的方法对推进剂的力学性能进行仿真预测,降低了实验成本并提高了预测效率。首先,对不同级配的HTPB推进剂进行拉伸试验,得到不同温度下抗拉强度和伸长率;其次,以拉伸试验结果为样本进行机器学习,分别构建了反向传播(Back Propagation,BP)神经网络、粒子群算法优化的反向传播(Particle Swarm Optimization Back Propagation,PSOBP)神经网络和遗传算法优化的反向传播(Genetic Algorithms Back Propagation,GABP)神经网络对推进剂的力学性能进行预测。结果表明,力学性能与颗粒级配的内在关系较为复杂,并非简单的线性关系。PSOBP和GABP可以用于预测不同级配下HTPB推进剂力学性能,并且GABP神经网络可以更好地预测推进剂的力学性能变化。展开更多
文摘固体推进剂中AP颗粒的级配不同会导致力学性能相差巨大,为了探究AP颗粒的粒度值和质量分数对端羟基聚丁二烯(HTPB)推进剂力学性能的影响规律,采用机器学习的方法对推进剂的力学性能进行仿真预测,降低了实验成本并提高了预测效率。首先,对不同级配的HTPB推进剂进行拉伸试验,得到不同温度下抗拉强度和伸长率;其次,以拉伸试验结果为样本进行机器学习,分别构建了反向传播(Back Propagation,BP)神经网络、粒子群算法优化的反向传播(Particle Swarm Optimization Back Propagation,PSOBP)神经网络和遗传算法优化的反向传播(Genetic Algorithms Back Propagation,GABP)神经网络对推进剂的力学性能进行预测。结果表明,力学性能与颗粒级配的内在关系较为复杂,并非简单的线性关系。PSOBP和GABP可以用于预测不同级配下HTPB推进剂力学性能,并且GABP神经网络可以更好地预测推进剂的力学性能变化。