期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Accurate GW_(0) band gaps and their phonon-induced renormalization in solids
1
作者 Tong Shen Xiao-Wei Zhang +2 位作者 Min-Ye Zhang Hong Jiang Xin-Zheng Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期82-93,共12页
Recent years,huge progress of first-principles methods has been witnessed in calculating the quasiparticle band gaps,with many-body perturbation theory in the GW approximation being the standard choice,where G refers ... Recent years,huge progress of first-principles methods has been witnessed in calculating the quasiparticle band gaps,with many-body perturbation theory in the GW approximation being the standard choice,where G refers to Green’s function and W denotes the dynamically screened Coulomb interaction.Numerically,the completeness of the basis set has been extensively discussed,but in practice far from carefully addressed.Beyond the static description of the nuclei,the electron–phonon interactions(EPIs)are ubiquitous,which cause zero-point renormalization(ZPR)of the band gaps.Therefore,to obtain high quality band gaps,one needs both accurate quasiparticle energies and accurate treatments of EPIs.In this article,we review methods on this.The completeness of the basis set is analyzed in the framework of linearized augmented plane waves,by adding high-energy local orbitals(HLOs).The electron–phonon matrix elements and self-energy are discussed,followed by the temperature dependence of the band gaps in both perturbative and non-perturbative methods.Applications of such an analysis on bulk wurtzite BeO and monolayer honeycomb BeO are given.Adding HLOs widens their GW_(0) band gaps by∼0.4 eV while ZPR narrows them by similar amount.These influences cancel each other,which explains the fortuitous agreement between experiment and theory when the basis set is incomplete and the EPIs are absent.The phonon-induced renormalization,a term often neglected in calculations of the band gaps,is also emphasized by its large magnitude. 展开更多
关键词 quasiparticle band gaps electron-phonon interactions basis-set completeness Beryllium oxide
下载PDF
材料电子能带结构计算的密度泛函理论方法 被引量:2
2
作者 蒋鸿 张旻烨 《中国科学:化学》 CAS CSCD 北大核心 2020年第10期1344-1362,共19页
材料的电子能带结构性质对其在光电能量转化中的应用具有决定性作用.发展能准确高效地预测材料电子能带结构的第一性原理方法一直以来都是计算材料科学领域中的重要问题.作为材料计算的"标准模型",局域密度近似(LDA)或广义梯... 材料的电子能带结构性质对其在光电能量转化中的应用具有决定性作用.发展能准确高效地预测材料电子能带结构的第一性原理方法一直以来都是计算材料科学领域中的重要问题.作为材料计算的"标准模型",局域密度近似(LDA)或广义梯度近似(GGA)下的密度泛函理论(DFT)存在显著低估材料带隙的系统性误差,即所谓的"带隙问题".以改进对带隙的描述为主要目标之一,近年来DFT领域有很多重要进展.本文阐述了在DFT框架内描述材料电子能带结构性质的理论基础,对近年来为克服LDA/GGA局限性所发展的各种新方法进行了系统评述,并针对仍然存在的挑战性问题给出了一些个人思考.此外,本文也对基于格林函数多体微扰理论的GW方法在近年来的发展进行了讨论. 展开更多
关键词 密度泛函理论 电子能带结构 带隙问题 杂化泛函 GW方法 第一性原理计算
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部