Objective To observe the value of deep learning (DL) models for automatic classification of echocardiographic views. Methods Totally 100 patients after heart transplantation were retrospectively enrolled and divided i...Objective To observe the value of deep learning (DL) models for automatic classification of echocardiographic views. Methods Totally 100 patients after heart transplantation were retrospectively enrolled and divided into training set, validation set and test set at a ratio of 7 ∶ 2 ∶ 1. ResNet18, ResNet34, Swin Transformer and Swin Transformer V2 models were established based on 2D apical two chamber view, 2D apical three chamber view, 2D apical four chamber view, 2D subcostal view, parasternal long-axis view of left ventricle, short-axis view of great arteries, short-axis view of apex of left ventricle, short-axis view of papillary muscle of left ventricle, short-axis view of mitral valve of left ventricle, also 3D and CDFI views of echocardiography. The accuracy, precision, recall, F1 score and confusion matrix were used to evaluate the performance of each model for automatically classifying echocardiographic views. The interactive interface was designed based on Qt Designer software and deployed on the desktop. Results The performance of models for automatically classifying echocardiographic views in test set were all good, with relatively poor performance for 2D short-axis view of left ventricle and superior performance for 3D and CDFI views. Swin Transformer V2 was the optimal model for automatically classifying echocardiographic views, with high accuracy, precision, recall and F1 score was 92.56%, 89.01%, 89.97% and 89.31%, respectively, which also had the highest diagonal value in confusion matrix and showed the best classification effect on various views in t-SNE figure. Conclusion DL model had good performance for automatically classifying echocardiographic views, especially Swin Transformer V2 model had the best performance. Using interactive classification interface could improve the interpretability of prediction results to some extent.展开更多
目的以心脏磁共振(cardiac magnetic resonance,CMR)为金标准,探讨加入人工智能技术的全自动三维超声右心室定量软件(3D Auto RV)评估心脏移植(heart transplantation,HT)术后右心室容积和右心室射血分数(right ventricular ejection fr...目的以心脏磁共振(cardiac magnetic resonance,CMR)为金标准,探讨加入人工智能技术的全自动三维超声右心室定量软件(3D Auto RV)评估心脏移植(heart transplantation,HT)术后右心室容积和右心室射血分数(right ventricular ejection fraction,RVEF)的可行性、准确性及可重复性。方法前瞻性纳入2018年10月至2019年6月于华中科技大学同济医学院附属协和医院行超声心动图复查,并且同意于超声心动图复查后24 h内行CMR检查的HT术后患者46例。分别应用CMR技术、3D Auto RV和常规半自动三维超声右心室量化软件(Tomtec 4D RV function 2.0)获取右心室舒张末期容积(RVEDV)、右心室收缩末期容积(RVESV)、右心室每搏量(RVSV)及RVEF。分别将3D Auto RV、常规半自动Tomtec的测量结果与CMR的测量结果进行比较,比较方法采用配对样本t检验、Pearson相关分析和一致性检验。结果3D Auto RV的可分析率为87%,该软件实现了在27例(59%)患者进行全自动分析,整个分析过程无需调节,分析时间仅需要(12±1)s;另外19例(41%)患者的分析结果需要手动调节,平均分析时间在2 min内,短于常规半自动Tomtec量化软件分析时间[(108±15)s对(160±34)s,P<0.001]。对于右心室容积:3D Auto RV和常规半自动Tomtec分析的RVEDV、RVESV和RVSV,均与CMR分析的相应测量值具有较高的相关性(r=0.77~0.84,均P<0.001)。与CMR测量值比较,3D Auto RV和常规半自动Tomtec技术均低估HT术后患者的RVEDV、RVESV和RVSV,但是3D Auto RV较常规半自动Tomtec的负性偏倚值更小。对于RVEF:3D Auto RV获得的RVEF与CMR获得的RVEF具有很高的相关性与一致性(r=0.84,P<0.001;偏倚值=-1.1%,一致性界限=-8.1%~6.0%)。另外,3D Auto RV手动调节获取的右心室容积和RVEF与CMR相应测量值的相关性(r=0.63~0.72,均P<0.001)低于全自动分析获取的右心室容积和RVEF与CMR相应测量值的相关性(r=0.76~0.82,均P<0.001)。重复性分析显示3D Auto RV获取的RVEDV、RVESV、RVSV和RVEF均具有很好的重复性。结论3D Auto RV轻度低估HT术后右心室容积,但是其低估程度低于常规半自动TomTec。3D Auto RV可以准确量化HT术后RVEF,分析过程快速,且分析结果可重复性好,有望实现在HT术后患者随访中的常规临床应用。展开更多
文摘Objective To observe the value of deep learning (DL) models for automatic classification of echocardiographic views. Methods Totally 100 patients after heart transplantation were retrospectively enrolled and divided into training set, validation set and test set at a ratio of 7 ∶ 2 ∶ 1. ResNet18, ResNet34, Swin Transformer and Swin Transformer V2 models were established based on 2D apical two chamber view, 2D apical three chamber view, 2D apical four chamber view, 2D subcostal view, parasternal long-axis view of left ventricle, short-axis view of great arteries, short-axis view of apex of left ventricle, short-axis view of papillary muscle of left ventricle, short-axis view of mitral valve of left ventricle, also 3D and CDFI views of echocardiography. The accuracy, precision, recall, F1 score and confusion matrix were used to evaluate the performance of each model for automatically classifying echocardiographic views. The interactive interface was designed based on Qt Designer software and deployed on the desktop. Results The performance of models for automatically classifying echocardiographic views in test set were all good, with relatively poor performance for 2D short-axis view of left ventricle and superior performance for 3D and CDFI views. Swin Transformer V2 was the optimal model for automatically classifying echocardiographic views, with high accuracy, precision, recall and F1 score was 92.56%, 89.01%, 89.97% and 89.31%, respectively, which also had the highest diagonal value in confusion matrix and showed the best classification effect on various views in t-SNE figure. Conclusion DL model had good performance for automatically classifying echocardiographic views, especially Swin Transformer V2 model had the best performance. Using interactive classification interface could improve the interpretability of prediction results to some extent.
文摘目的以心脏磁共振(cardiac magnetic resonance,CMR)为金标准,探讨加入人工智能技术的全自动三维超声右心室定量软件(3D Auto RV)评估心脏移植(heart transplantation,HT)术后右心室容积和右心室射血分数(right ventricular ejection fraction,RVEF)的可行性、准确性及可重复性。方法前瞻性纳入2018年10月至2019年6月于华中科技大学同济医学院附属协和医院行超声心动图复查,并且同意于超声心动图复查后24 h内行CMR检查的HT术后患者46例。分别应用CMR技术、3D Auto RV和常规半自动三维超声右心室量化软件(Tomtec 4D RV function 2.0)获取右心室舒张末期容积(RVEDV)、右心室收缩末期容积(RVESV)、右心室每搏量(RVSV)及RVEF。分别将3D Auto RV、常规半自动Tomtec的测量结果与CMR的测量结果进行比较,比较方法采用配对样本t检验、Pearson相关分析和一致性检验。结果3D Auto RV的可分析率为87%,该软件实现了在27例(59%)患者进行全自动分析,整个分析过程无需调节,分析时间仅需要(12±1)s;另外19例(41%)患者的分析结果需要手动调节,平均分析时间在2 min内,短于常规半自动Tomtec量化软件分析时间[(108±15)s对(160±34)s,P<0.001]。对于右心室容积:3D Auto RV和常规半自动Tomtec分析的RVEDV、RVESV和RVSV,均与CMR分析的相应测量值具有较高的相关性(r=0.77~0.84,均P<0.001)。与CMR测量值比较,3D Auto RV和常规半自动Tomtec技术均低估HT术后患者的RVEDV、RVESV和RVSV,但是3D Auto RV较常规半自动Tomtec的负性偏倚值更小。对于RVEF:3D Auto RV获得的RVEF与CMR获得的RVEF具有很高的相关性与一致性(r=0.84,P<0.001;偏倚值=-1.1%,一致性界限=-8.1%~6.0%)。另外,3D Auto RV手动调节获取的右心室容积和RVEF与CMR相应测量值的相关性(r=0.63~0.72,均P<0.001)低于全自动分析获取的右心室容积和RVEF与CMR相应测量值的相关性(r=0.76~0.82,均P<0.001)。重复性分析显示3D Auto RV获取的RVEDV、RVESV、RVSV和RVEF均具有很好的重复性。结论3D Auto RV轻度低估HT术后右心室容积,但是其低估程度低于常规半自动TomTec。3D Auto RV可以准确量化HT术后RVEF,分析过程快速,且分析结果可重复性好,有望实现在HT术后患者随访中的常规临床应用。