期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于双路并行多尺度ResNet的滚动轴承故障诊断方法
被引量:
8
1
作者
赵小强
张毓春
《振动与冲击》
EI
CSCD
北大核心
2023年第3期199-208,共10页
针对传统方法在滚动轴承故障诊断中无法自适应提取有效特征信息,且滚动轴承在强环境噪声干扰、复杂变工况等因素影响下诊断效果不佳,有抗噪性和泛化性下降的问题,提出了一种双路并行多尺度的改进残差神经网络(residual neural network, ...
针对传统方法在滚动轴承故障诊断中无法自适应提取有效特征信息,且滚动轴承在强环境噪声干扰、复杂变工况等因素影响下诊断效果不佳,有抗噪性和泛化性下降的问题,提出了一种双路并行多尺度的改进残差神经网络(residual neural network, ResNet)的方法。该方法设计了多尺度的残差Inception模块,可以有效提取特征信息,同时加入注意力机制解决了数据的突变性和差异性,此外还使用多个空洞卷积的残差块扩大感受野,有助于提取更多特征信息,实现准确故障诊断。利用凯斯西储大学轴承数据集和东南大学变速箱数据集分别训练并测试了诊断效果,将该方法与其他卷积神经网络的方法在变噪声、变工况情况下作了对比,诊断准确率最高达到99.73%,平均准确率也在95%以上,均高于其他比较方法。结果表明,该方法在复杂多变的工况下具有较好的故障识别能力和泛化能力。
展开更多
关键词
故障诊断
滚动轴承
变工况
注意力机制
多尺度ResNet
下载PDF
职称材料
题名
基于双路并行多尺度ResNet的滚动轴承故障诊断方法
被引量:
8
1
作者
赵小强
张毓春
机构
兰州理工大学电气工程与信息工程学院
甘肃省工业过程先进控制重点实验室
兰州理工大学
出处
《振动与冲击》
EI
CSCD
北大核心
2023年第3期199-208,共10页
基金
国家自然科学基金(61763029)
甘肃省科技计划资助(2021YF5GA072,21JR7RA206)
甘肃省教育厅产业支撑计划项目(2021CYZC-02)。
文摘
针对传统方法在滚动轴承故障诊断中无法自适应提取有效特征信息,且滚动轴承在强环境噪声干扰、复杂变工况等因素影响下诊断效果不佳,有抗噪性和泛化性下降的问题,提出了一种双路并行多尺度的改进残差神经网络(residual neural network, ResNet)的方法。该方法设计了多尺度的残差Inception模块,可以有效提取特征信息,同时加入注意力机制解决了数据的突变性和差异性,此外还使用多个空洞卷积的残差块扩大感受野,有助于提取更多特征信息,实现准确故障诊断。利用凯斯西储大学轴承数据集和东南大学变速箱数据集分别训练并测试了诊断效果,将该方法与其他卷积神经网络的方法在变噪声、变工况情况下作了对比,诊断准确率最高达到99.73%,平均准确率也在95%以上,均高于其他比较方法。结果表明,该方法在复杂多变的工况下具有较好的故障识别能力和泛化能力。
关键词
故障诊断
滚动轴承
变工况
注意力机制
多尺度ResNet
Keywords
fault diagnosis
rolling bearing
variable working condition
attention mechanism
multi-scale ResNet
分类号
TH133.3 [机械工程—机械制造及自动化]
TP206.3 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于双路并行多尺度ResNet的滚动轴承故障诊断方法
赵小强
张毓春
《振动与冲击》
EI
CSCD
北大核心
2023
8
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部