[目的]研究无监督词性标注模型在低资源语言上的性能表现.[方法]尝试利用无监督词性标注模型,包括高斯隐马尔科夫模型(Gaussian HMM,GHMM)、最大化互信息模型(mutual information maximization, MIM)与条件随机场自编码器(conditional r...[目的]研究无监督词性标注模型在低资源语言上的性能表现.[方法]尝试利用无监督词性标注模型,包括高斯隐马尔科夫模型(Gaussian HMM,GHMM)、最大化互信息模型(mutual information maximization, MIM)与条件随机场自编码器(conditional random filed autoencoder, CRF-AE),展开低资源词性标注实验.基于对前人工作的凝练,在英文宾州树库上设置了少样本和词典标注两种低资源场景.[结果]无监督词性标注模型能够在少样本场景中超越条件随机场模型,但在词典标注场景中却始终逊色于条件随机场模型.[结论]无监督损失更加擅长对高频词进行建模,使得模型在少样本场景下获得更好的性能表现;同时无监督损失倾向于生成更加均匀的词性分布,从而降低模型在词典标注场景下的性能.展开更多
文摘[目的]研究无监督词性标注模型在低资源语言上的性能表现.[方法]尝试利用无监督词性标注模型,包括高斯隐马尔科夫模型(Gaussian HMM,GHMM)、最大化互信息模型(mutual information maximization, MIM)与条件随机场自编码器(conditional random filed autoencoder, CRF-AE),展开低资源词性标注实验.基于对前人工作的凝练,在英文宾州树库上设置了少样本和词典标注两种低资源场景.[结果]无监督词性标注模型能够在少样本场景中超越条件随机场模型,但在词典标注场景中却始终逊色于条件随机场模型.[结论]无监督损失更加擅长对高频词进行建模,使得模型在少样本场景下获得更好的性能表现;同时无监督损失倾向于生成更加均匀的词性分布,从而降低模型在词典标注场景下的性能.