Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an...Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an important pathway to engineer superconductivity in topological matters.However,such monolayer sample is difficult to obtain,unstable in air,and with extremely low Tc.Here we report an experimentally convenient approach to control the interlayer coupling to achieve tailored topological properties,enhanced superconductivity and good sample stability through organic-cation intercalation of the Weyl semimetals MoTe2 and WTe2.The as-formed organic-inorganic hybrid crystals are weak topological insulators with enhanced Tc of 7.0 K for intercalated MoTe2(0.25 K for pristine crystal)and2.3 K for intercalated WTe2(2.8 times compared to monolayer WTe2).Such organic-cation intercalation method can be readily applied to many other layered crystals,providing a new pathway for manipulating their electronic,topological and superconducting properties.展开更多
基金supported by the National Natural Science Foundation of China(11725418,21975140)Ministry of Science and Technology of China(2016YFA0301004,2016YFA0301001 and2015CB921001)+1 种基金the Basic Science Center Program of NSFC(51788104)Beijing Advanced Innovation Center for Future Chip(ICFC).
文摘Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an important pathway to engineer superconductivity in topological matters.However,such monolayer sample is difficult to obtain,unstable in air,and with extremely low Tc.Here we report an experimentally convenient approach to control the interlayer coupling to achieve tailored topological properties,enhanced superconductivity and good sample stability through organic-cation intercalation of the Weyl semimetals MoTe2 and WTe2.The as-formed organic-inorganic hybrid crystals are weak topological insulators with enhanced Tc of 7.0 K for intercalated MoTe2(0.25 K for pristine crystal)and2.3 K for intercalated WTe2(2.8 times compared to monolayer WTe2).Such organic-cation intercalation method can be readily applied to many other layered crystals,providing a new pathway for manipulating their electronic,topological and superconducting properties.