期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多面体不确定集合的电力系统灵活性量化评估方法
1
作者 孙东磊 王宪 +3 位作者 孙毅 孟祥飞 张涌琛 张玉敏 《中国电力》 CSCD 北大核心 2024年第9期146-155,共10页
随着风电、光伏等新能源接入比例的不断提高,源荷不确定性增强扩大了电力系统的运行灵活性需求。为准确量化电力系统的灵活性需求,制定兼顾灵活性与经济性的优化方案,提出了一种基于多面体不确定集合的电力系统灵活性量化评估方法。首先... 随着风电、光伏等新能源接入比例的不断提高,源荷不确定性增强扩大了电力系统的运行灵活性需求。为准确量化电力系统的灵活性需求,制定兼顾灵活性与经济性的优化方案,提出了一种基于多面体不确定集合的电力系统灵活性量化评估方法。首先,采用多面体不确定集合量化多个光伏电站出力的波动性、不确定性及相关性特征,进而分析净负荷波动区间,构建电力系统灵活性需求量化模型。其次,基于仿射策略建立考虑灵活性需求的仿射可调鲁棒优化模型,并将所建立的鲁棒优化模型转化为混合整数线性规划模型进行求解。最后,基于6节点系统与IEEE 57系统,在不同不确定性场景下对比所提模型的优化结果,验证了该方法在系统的灵活性需求量化评估的有效性。 展开更多
关键词 新能源 不确定性 运行灵活性 多面体不确定集合 仿射可调鲁棒优化
下载PDF
基于集合经验模态分解的增强核岭回归配电系统状态估计
2
作者 张玉敏 张涌琛 +4 位作者 叶平峰 吉兴全 石春友 蔡富东 李一宸 《中国电力》 CSCD 北大核心 2024年第9期156-168,共13页
针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对... 针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。 展开更多
关键词 配电系统 状态估计 核岭回归 非高斯噪声 集合经验模态分解
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部