期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于CEEMD和迁移学习的滚动轴承故障诊断研究
1
作者 张润地 刘雨晖 +1 位作者 荆晓远 韩光信 《河南科技》 2024年第4期19-25,共7页
【目的】在实际生产环境中,由于机器特征复杂和工况变化,智能诊断模型在跨机组迁移时需要重复训练,这不仅增加了时间成本,还加大了算力资源的消耗。为了解决这些问题,需要开发出一种能适应复杂机器特征并在不同工况下保持高准确度的轴... 【目的】在实际生产环境中,由于机器特征复杂和工况变化,智能诊断模型在跨机组迁移时需要重复训练,这不仅增加了时间成本,还加大了算力资源的消耗。为了解决这些问题,需要开发出一种能适应复杂机器特征并在不同工况下保持高准确度的轴承故障诊断方法,同时,减少模型迁移时所需的重复训练,以便实现更高效的故障识别和预测。【方法】研究提出基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)和迁移学习的滚动轴承故障诊断方法。首先,采用CEEMD法对原始信号进行分解,并计算出对应分量的峭度值。其次,采用多核最大均值差异法对源域数据与目标域数据进行域适应处理。最后,在凯斯西储大学轴承数据集和美国机械故障预防技术学会轴承数据集之间进行迁移故障诊断试验及对比分析。【结果】研究结果表明,与直接迁移模型算法相比,基于CEEMD改进的迁移学习网络在不同数据集上的迁移效果更好,其故障诊断的准确率最高。【结论】经试验验证,研究所提的方法表现出良好的变工况跨机组适配能力,具有较高的故障诊断精度,为研究复杂工况下多机组相似故障诊断场景提供了非常有价值的参考。 展开更多
关键词 滚动轴承 互补集合经验模态分解 迁移学习 故障诊断
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部