现有目标检测算法在小目标检测中存在可利用特征少、有效特征提取困难、易受环境干扰等问题.基于此,提出一种高效的主干特征提取网络EfficientNet来进行目标检测,在检测模型中融合注意力机制,以增强对小目标的识别能力.将提出的模型应...现有目标检测算法在小目标检测中存在可利用特征少、有效特征提取困难、易受环境干扰等问题.基于此,提出一种高效的主干特征提取网络EfficientNet来进行目标检测,在检测模型中融合注意力机制,以增强对小目标的识别能力.将提出的模型应用到细微裂缝检测中,从增强小目标识别、减少模型参数、提高网络检测速度三方面进行改进,研究结果表明:当输入图像为416×416分辨率时,本文模型的F1值相比于主流检测模型至少有3%的提升,模型的参数量与主流检测器相比减少了80%~85%,检测速率可达到每秒帧数(Frame Per Second,FPS)102帧/s.展开更多
文摘现有目标检测算法在小目标检测中存在可利用特征少、有效特征提取困难、易受环境干扰等问题.基于此,提出一种高效的主干特征提取网络EfficientNet来进行目标检测,在检测模型中融合注意力机制,以增强对小目标的识别能力.将提出的模型应用到细微裂缝检测中,从增强小目标识别、减少模型参数、提高网络检测速度三方面进行改进,研究结果表明:当输入图像为416×416分辨率时,本文模型的F1值相比于主流检测模型至少有3%的提升,模型的参数量与主流检测器相比减少了80%~85%,检测速率可达到每秒帧数(Frame Per Second,FPS)102帧/s.