为深入探讨氮沉降影响草原植物金属养分吸收及其与土壤养分的耦合关系,以内蒙古典型草原4种主要物种为研究对象,设置0、5、10、15 g N/(m^(2)·yr)4个氮添加处理,分析不同施氮量对草原物种及群落水平植物叶片盐基、微量元素含量和...为深入探讨氮沉降影响草原植物金属养分吸收及其与土壤养分的耦合关系,以内蒙古典型草原4种主要物种为研究对象,设置0、5、10、15 g N/(m^(2)·yr)4个氮添加处理,分析不同施氮量对草原物种及群落水平植物叶片盐基、微量元素含量和储量的影响。结果表明:(1)杂类草比禾本科植物具有更高的养分浓度;(2)不同金属养分对氮沉降的响应具有高度的物种特异性;植物群落叶片盐基元素含量对氮添加无显著响应且与土壤盐基离子相关性较低;随氮添加量的增加,叶片中Mn、Cu含量增加,但Fe含量降低,草原植物微量元素失衡严重主要受土壤微量养分有效性和元素拮抗作用的影响;(3)植物金属元素地上储量的饱和阈值出现在10 g N/(m^(2)·yr);优势物种地上生物量对氮添加的非线性响应是驱动植物元素地上储量变化的主要机制。展开更多
The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenya...The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.展开更多
文摘为深入探讨氮沉降影响草原植物金属养分吸收及其与土壤养分的耦合关系,以内蒙古典型草原4种主要物种为研究对象,设置0、5、10、15 g N/(m^(2)·yr)4个氮添加处理,分析不同施氮量对草原物种及群落水平植物叶片盐基、微量元素含量和储量的影响。结果表明:(1)杂类草比禾本科植物具有更高的养分浓度;(2)不同金属养分对氮沉降的响应具有高度的物种特异性;植物群落叶片盐基元素含量对氮添加无显著响应且与土壤盐基离子相关性较低;随氮添加量的增加,叶片中Mn、Cu含量增加,但Fe含量降低,草原植物微量元素失衡严重主要受土壤微量养分有效性和元素拮抗作用的影响;(3)植物金属元素地上储量的饱和阈值出现在10 g N/(m^(2)·yr);优势物种地上生物量对氮添加的非线性响应是驱动植物元素地上储量变化的主要机制。
文摘The vertical variation and storage of nitrogen in the depth of 0-150 cm of an aquic brown soil were studied under 14 years of four land use patterns, i.e., paddy field, maize field, fallow field and woodland in Shenyang Experimental Station of Ecology, Chinese Academy of Sciences in November of 2003. The results showed that different land uses had different profile distributions of soil total nitrogen (STN), alkali N, ammonium (NH4+-N) and nitrate (NO3--N). The sequence of STN storage was woodland >maize field > fallow field > paddy field, while that of NO3--N content was maize field > paddy field > woodland > fallow field, suggesting the different root biomass and biological N cycling under various land uses. The STN storage in the depth of 0-100 cm of woodland averaged to 11.41 thm-1, being 1.65 and 1.25 times as much as that in paddy and maize fields, respec-tively, while there was no significant difference between maize and fallow fields. The comparatively higher amount of NO3--N in maize and paddy fields may be due to nitrogen fertilization and anthropogenic disturbance. Soil alkali N was significantly related with STN, and the correlation could be expressed by a linear regression model under each land use (R20.929, p<0.001). Such a correlation was slightly closer in nature (woodland and fallow field) than in agro ecosystems (paddy and maize fields). Heavy N fertilization induced an excess of crop need, and led to a comparatively higher amount of soil NO3--N in cultivated fields than in fallow field and woodland. It is suggested that agroforestry practices have the potential to make a significant contribution to both crop production and environment protection.