Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determinati...Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds.展开更多
基金supported by the National Key Basic Research Program of China (2016YFA0300102)the National Natural Science Foundation of China (No.11675179,No.U1532142,and No.11434009)the Fundamental Research Funds for the Central Universities
文摘Oxygen evolution reaction is one of the key processes in the promising renewable energy technique of electrocatalytic water splitting.Developing high ecient oxygen evolution reaction(OER)catalysts requires determination of the optimal values of the descriptor parameters.Using spinel CoFe2O4 as the model catalyst,this work demonstrates that irradiation with pulsed UV laser can control the quantity of surface oxygen vacancy and thus modify the OER activity,in a volcano-shape evolution trend.This strategy sheds light on quantita-tively investigation of the relationship between surface cation valence,anion vacancy,and physicochemical properties of transition-metal-based compounds.