期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度特征互补和聚合约束的肺结节分类方法
被引量:
1
1
作者
张琮昊
迟子秋
+1 位作者
王占全
王喆
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期435-441,共7页
肺结节分类问题是早期肺癌检测与诊断的重要问题之一,针对现有的肺结节分类方法存在多尺度特征融合的信息冗余和缺乏判别性特征表示等问题,提出了一个基于多尺度特征互补与聚合约束(Multi-scale Feature Complementation and Aggregate ...
肺结节分类问题是早期肺癌检测与诊断的重要问题之一,针对现有的肺结节分类方法存在多尺度特征融合的信息冗余和缺乏判别性特征表示等问题,提出了一个基于多尺度特征互补与聚合约束(Multi-scale Feature Complementation and Aggregate Constraint, MFCAC)的肺结节分类方法,并提出了多尺度特征互补模块用于学习相邻尺度特征的差异信息,从而避免特征融合过程中的信息冗余;同时在网络特征层引入了聚合约束损失,实现对同类特征的聚集,提高网络判别性特征表示能力;将两个模块融入在编码器-解码器架构中形成MFCAC,共同作用实现高效分类。本文在LIDC-IDRI数据集上进行了对比实验,并通过消融实验分析了该方法中各组成部分的贡献和影响,结果表明,相较于对比算法,MFCAC在肺结节分类上具有更优的性能。
展开更多
关键词
早期肺癌诊断
肺结节分类
深度学习
多尺度特征
卷积神经网络
下载PDF
职称材料
基于移动窗口注意力机制和编码解码器的肺结节分类方法
被引量:
1
2
作者
张琮昊
迟子秋
+1 位作者
王占全
王喆
《大连工业大学学报》
CAS
2024年第1期73-78,共6页
针对肺结节分类方法仍存在缺乏推理过程的可解释性和判别性特征表示等问题,提出了一个基于移动窗口注意力机制和编码解码器肺结节分类方法(SWAC)来对图像进行特征提取。该模型结合了卷积神经网络(CNN)和移动窗口注意力机制的优势,通过...
针对肺结节分类方法仍存在缺乏推理过程的可解释性和判别性特征表示等问题,提出了一个基于移动窗口注意力机制和编码解码器肺结节分类方法(SWAC)来对图像进行特征提取。该模型结合了卷积神经网络(CNN)和移动窗口注意力机制的优势,通过关注结节分类所必需的区域进行结节分类,有效地提取了结节的浅层特征和深层特征。该卷积神经网络引入了Focal损失函数,对网络主干进行特征约束来关注难分类样本,以此提升网络的判别表征能力。在LIDC-IDRI数据集上通过消融实验分析了该方法中各部分的贡献和影响,结果表明,SWAC分类方法具有优异的性能。
展开更多
关键词
肺结节分类
深度学习
注意力机制
下载PDF
职称材料
题名
基于多尺度特征互补和聚合约束的肺结节分类方法
被引量:
1
1
作者
张琮昊
迟子秋
王占全
王喆
机构
华东理工大学信息科学与工程学院
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第3期435-441,共7页
基金
国家自然科学基金(62076094)
上海市科技计划(21511100800,20511100600)。
文摘
肺结节分类问题是早期肺癌检测与诊断的重要问题之一,针对现有的肺结节分类方法存在多尺度特征融合的信息冗余和缺乏判别性特征表示等问题,提出了一个基于多尺度特征互补与聚合约束(Multi-scale Feature Complementation and Aggregate Constraint, MFCAC)的肺结节分类方法,并提出了多尺度特征互补模块用于学习相邻尺度特征的差异信息,从而避免特征融合过程中的信息冗余;同时在网络特征层引入了聚合约束损失,实现对同类特征的聚集,提高网络判别性特征表示能力;将两个模块融入在编码器-解码器架构中形成MFCAC,共同作用实现高效分类。本文在LIDC-IDRI数据集上进行了对比实验,并通过消融实验分析了该方法中各组成部分的贡献和影响,结果表明,相较于对比算法,MFCAC在肺结节分类上具有更优的性能。
关键词
早期肺癌诊断
肺结节分类
深度学习
多尺度特征
卷积神经网络
Keywords
early diagnosis of lung cancer
classification of pulmonary nodule
deep learning
multi-scale features
convolutional neural network
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
基于移动窗口注意力机制和编码解码器的肺结节分类方法
被引量:
1
2
作者
张琮昊
迟子秋
王占全
王喆
机构
华东理工大学信息科学与工程学院
出处
《大连工业大学学报》
CAS
2024年第1期73-78,共6页
基金
国家自然科学基金项目(62076094)
上海市科技计划项目(21511100800,20511100600)。
文摘
针对肺结节分类方法仍存在缺乏推理过程的可解释性和判别性特征表示等问题,提出了一个基于移动窗口注意力机制和编码解码器肺结节分类方法(SWAC)来对图像进行特征提取。该模型结合了卷积神经网络(CNN)和移动窗口注意力机制的优势,通过关注结节分类所必需的区域进行结节分类,有效地提取了结节的浅层特征和深层特征。该卷积神经网络引入了Focal损失函数,对网络主干进行特征约束来关注难分类样本,以此提升网络的判别表征能力。在LIDC-IDRI数据集上通过消融实验分析了该方法中各部分的贡献和影响,结果表明,SWAC分类方法具有优异的性能。
关键词
肺结节分类
深度学习
注意力机制
Keywords
classification of pulmonary nodules
deep learning
attention mechanism
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度特征互补和聚合约束的肺结节分类方法
张琮昊
迟子秋
王占全
王喆
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
2
基于移动窗口注意力机制和编码解码器的肺结节分类方法
张琮昊
迟子秋
王占全
王喆
《大连工业大学学报》
CAS
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部