期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习与支持向量机的低截获概率雷达信号识别
被引量:
7
1
作者
张穆清
王华力
倪雪
《科技导报》
CAS
CSCD
北大核心
2019年第4期69-75,共7页
提出了一种基于栈式自编码器与支持向量机的低截获概率(LPI)雷达信号识别方法。首先,通过Choi-Williams图像预处理方法对时频图像进行处理,得到便于自编码器处理的图像;再次,使用栈式自编码器从预处理后的时频图像中自动地提取出信号特...
提出了一种基于栈式自编码器与支持向量机的低截获概率(LPI)雷达信号识别方法。首先,通过Choi-Williams图像预处理方法对时频图像进行处理,得到便于自编码器处理的图像;再次,使用栈式自编码器从预处理后的时频图像中自动地提取出信号特征;最后,基于提取的信号特征使用支持向量机(SVM)对信号进行分类。本方法使用任意波形发生器(AWG)模拟产生了8类LPI雷达信号,采用栈式自编码器与支持向量机相结合的方法识别信号。仿真实验结果表明,该方法能够在低信噪比和小样本情形下有效识别LPI雷达信号。
展开更多
关键词
低截获概率雷达信号
自编码器
支持向量机
小样本
原文传递
题名
基于深度学习与支持向量机的低截获概率雷达信号识别
被引量:
7
1
作者
张穆清
王华力
倪雪
机构
陆军工程大学通信工程学院
出处
《科技导报》
CAS
CSCD
北大核心
2019年第4期69-75,共7页
基金
国家自然科学基金项目(61271354)
文摘
提出了一种基于栈式自编码器与支持向量机的低截获概率(LPI)雷达信号识别方法。首先,通过Choi-Williams图像预处理方法对时频图像进行处理,得到便于自编码器处理的图像;再次,使用栈式自编码器从预处理后的时频图像中自动地提取出信号特征;最后,基于提取的信号特征使用支持向量机(SVM)对信号进行分类。本方法使用任意波形发生器(AWG)模拟产生了8类LPI雷达信号,采用栈式自编码器与支持向量机相结合的方法识别信号。仿真实验结果表明,该方法能够在低信噪比和小样本情形下有效识别LPI雷达信号。
关键词
低截获概率雷达信号
自编码器
支持向量机
小样本
Keywords
low probability of intercept radar signal
autoencoder
support vector machine
small sample
分类号
TN957.51 [电子电信—信号与信息处理]
TP18 [自动化与计算机技术—控制理论与控制工程]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于深度学习与支持向量机的低截获概率雷达信号识别
张穆清
王华力
倪雪
《科技导报》
CAS
CSCD
北大核心
2019
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部