目的检测烟雾可以预警火灾。视频监控烟雾比传统的单点探测器监控范围更广、反应更灵敏,对环境和安装的要求也更低。但是目前的烟雾检测算法,无论是利用烟雾的色彩、纹理等静态特征和飘动、形状变化或者频域变化等动态特征的传统方法,...目的检测烟雾可以预警火灾。视频监控烟雾比传统的单点探测器监控范围更广、反应更灵敏,对环境和安装的要求也更低。但是目前的烟雾检测算法,无论是利用烟雾的色彩、纹理等静态特征和飘动、形状变化或者频域变化等动态特征的传统方法,还是采用卷积神经网络、循环神经网络等深度学习的方法,准确率和敏感性都不高。方法本文着眼于烟雾的升腾特性,根据烟雾运动轨迹的右倾直线特性、连续流线型特性、低频特性、烟源固定特性和比例特性,采用切片的方式用卷积神经网络(CNN)抽取时间压缩轨迹的动态特征,用循环神经网络(RNN)抽取长程的时间关联关系,采用分块的方式提高空间分辨能力,能准确、迅速地识别烟雾轨迹并发出火灾预警。结果对比CNN、C3D(3d convolutional networks)、traj+SVM(trajectory by support vector machine)、traj+RNNs(trajectory by recurrent neural network)和本文方法traj+CNN+RNNs(trajectory by convolutional neural networks and recurrent neural network)以验证效果。CNN和C3D先卷积抽取特征,后分类。traj+SVM采用SVM辨识视频时间压缩图像中的烟雾轨迹,traj+RNNs采用RNNs分辨烟雾轨迹,traj+CNN+RNNs结合CNN和RNNs识别轨迹。实验表明,与traj+SVM相比,traj+CNN+RNNs准确率提高了35.2%,真负率提高15.6%o但是深度学习的方法往往计算消耗很大,traj+CNN+RNNs占用内存2.31 GB,网络权重261 MB,前向分析时帧率49帧/s,而traj+SVM帧率为178帧/s。但与CNN、C3D相比,本文方法较轻较快。为了进一步验证方法的有效性,采用一般方法难以识别的数据进一步测试对比这5个方法。实验结果表明,基于轨迹的方法仍然取得较好的效果,traj+CNN+RNNs的准确率、真正率、真负率和帧率还能达到0.853、0.847、0.872和52帧/s,但是CNN.C3D的准确率下降到0.585、0.716。结论从视频的时间压缩轨迹可以辨认出烟雾的轨迹,即便是早期的弱小烟雾也能准确识别,因此traj+CNN+RNNs辨识轨迹的方法有助于预警早期火灾。本文方法能够在较少的资源耗费下大幅度提高烟雾检测的准确性和敏感性。展开更多
文摘目的检测烟雾可以预警火灾。视频监控烟雾比传统的单点探测器监控范围更广、反应更灵敏,对环境和安装的要求也更低。但是目前的烟雾检测算法,无论是利用烟雾的色彩、纹理等静态特征和飘动、形状变化或者频域变化等动态特征的传统方法,还是采用卷积神经网络、循环神经网络等深度学习的方法,准确率和敏感性都不高。方法本文着眼于烟雾的升腾特性,根据烟雾运动轨迹的右倾直线特性、连续流线型特性、低频特性、烟源固定特性和比例特性,采用切片的方式用卷积神经网络(CNN)抽取时间压缩轨迹的动态特征,用循环神经网络(RNN)抽取长程的时间关联关系,采用分块的方式提高空间分辨能力,能准确、迅速地识别烟雾轨迹并发出火灾预警。结果对比CNN、C3D(3d convolutional networks)、traj+SVM(trajectory by support vector machine)、traj+RNNs(trajectory by recurrent neural network)和本文方法traj+CNN+RNNs(trajectory by convolutional neural networks and recurrent neural network)以验证效果。CNN和C3D先卷积抽取特征,后分类。traj+SVM采用SVM辨识视频时间压缩图像中的烟雾轨迹,traj+RNNs采用RNNs分辨烟雾轨迹,traj+CNN+RNNs结合CNN和RNNs识别轨迹。实验表明,与traj+SVM相比,traj+CNN+RNNs准确率提高了35.2%,真负率提高15.6%o但是深度学习的方法往往计算消耗很大,traj+CNN+RNNs占用内存2.31 GB,网络权重261 MB,前向分析时帧率49帧/s,而traj+SVM帧率为178帧/s。但与CNN、C3D相比,本文方法较轻较快。为了进一步验证方法的有效性,采用一般方法难以识别的数据进一步测试对比这5个方法。实验结果表明,基于轨迹的方法仍然取得较好的效果,traj+CNN+RNNs的准确率、真正率、真负率和帧率还能达到0.853、0.847、0.872和52帧/s,但是CNN.C3D的准确率下降到0.585、0.716。结论从视频的时间压缩轨迹可以辨认出烟雾的轨迹,即便是早期的弱小烟雾也能准确识别,因此traj+CNN+RNNs辨识轨迹的方法有助于预警早期火灾。本文方法能够在较少的资源耗费下大幅度提高烟雾检测的准确性和敏感性。