针对高功率微波对电子设备的安全威胁,设计了一种双层柱状等离子体阵列对高功率微波进行防护。其中单根等离子体柱的直径为25.4 mm,长度为600 mm,等离子体频率与碰撞频率可进行控制。利用搭建的实验测量系统,研究了微波极化方向、等离...针对高功率微波对电子设备的安全威胁,设计了一种双层柱状等离子体阵列对高功率微波进行防护。其中单根等离子体柱的直径为25.4 mm,长度为600 mm,等离子体频率与碰撞频率可进行控制。利用搭建的实验测量系统,研究了微波极化方向、等离子体电子密度、放电单元层数等因素对高功率微波透射衰减的影响。实验结果表明:当高功率微波未激发等离子体产生非线性效应时,TM极化时的防护效果优于TE极化时的防护效果,且能量衰减分别可达20.9 d B和14.7 d B;随等离子体电子密度增大,微波透射功率减小,防护效果增强;由于层间反射作用,双层等离子体对高功率微波的透射衰减远大于单层等离子体衰减值的两倍。展开更多
文摘针对高功率微波对电子设备的安全威胁,设计了一种双层柱状等离子体阵列对高功率微波进行防护。其中单根等离子体柱的直径为25.4 mm,长度为600 mm,等离子体频率与碰撞频率可进行控制。利用搭建的实验测量系统,研究了微波极化方向、等离子体电子密度、放电单元层数等因素对高功率微波透射衰减的影响。实验结果表明:当高功率微波未激发等离子体产生非线性效应时,TM极化时的防护效果优于TE极化时的防护效果,且能量衰减分别可达20.9 d B和14.7 d B;随等离子体电子密度增大,微波透射功率减小,防护效果增强;由于层间反射作用,双层等离子体对高功率微波的透射衰减远大于单层等离子体衰减值的两倍。