随着综合能源系统的不断扩大和可再生能源并网的发展,如何提高新型能源下的电、热、气三网互联的运行效率和灵活性成为亟待解决的问题。在火力发电机组基础上,加入热电解耦的热电联产(combined heat and power,CHP)设备、电转气(power t...随着综合能源系统的不断扩大和可再生能源并网的发展,如何提高新型能源下的电、热、气三网互联的运行效率和灵活性成为亟待解决的问题。在火力发电机组基础上,加入热电解耦的热电联产(combined heat and power,CHP)设备、电转气(power to gas,P2G)设备和储电、储热设备,构建电-热-气三网互联的综合能源系统。针对具有风电不确定性的综合能源系统,提出计及风险规避的分布鲁棒优化模型,以各发电机组的综合成本最小为目标函数,以电网、热网、气网和风电机组的约束为条件,用风险值表示风电不确定度。通过控制风险模糊概率模型中的风险值和置信度,实现系统的经济运行和优化调度,改善新能源消纳问题。最后采用IEEE 39节点系统验证了模型的可行性和有效性。展开更多
文摘随着综合能源系统的不断扩大和可再生能源并网的发展,如何提高新型能源下的电、热、气三网互联的运行效率和灵活性成为亟待解决的问题。在火力发电机组基础上,加入热电解耦的热电联产(combined heat and power,CHP)设备、电转气(power to gas,P2G)设备和储电、储热设备,构建电-热-气三网互联的综合能源系统。针对具有风电不确定性的综合能源系统,提出计及风险规避的分布鲁棒优化模型,以各发电机组的综合成本最小为目标函数,以电网、热网、气网和风电机组的约束为条件,用风险值表示风电不确定度。通过控制风险模糊概率模型中的风险值和置信度,实现系统的经济运行和优化调度,改善新能源消纳问题。最后采用IEEE 39节点系统验证了模型的可行性和有效性。