The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities o...The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 50823003 and 90923018)
文摘The mechanism of contact electrification between metals was studied using the first-principles method, taking the Ag-Fe contact as an example. Charge population, charge density difference, the orbitals and densities of states (DOS) were calculated to study the electronic properties of the contacting interfacial atoms. Based on the calculation, the amount of contact charge was obtained. The investigation revealed that the electrons near Fermi levels with higher energies transfer between the outermost orbitals (s orbitals for Ag and d orbitals for Fe). Meanwhile, polarized covalent bonds form between the d electrons in the deep energy states. These two effects together lead to an increase of charge magnitude at the interface. Also, the electrons responsible for electrification can be determined by their energies and orbitals.