在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squ...在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squeeze)相结合的交通标志识别方法.首先,采用K-means对交通标志图像进行三角形、圆形图像二聚类,并利用制作的切割模板切割ROI并提取HOG特征;然后,利用卷积神经网络(Convolutional NeuralNetwork,CNN)对HOG特征进行过滤、降维,并通过Squeeze网络对过滤后的二次特征进行重要性标定;最后,训练该网络模型并实现对交通标志的识别.仿真结果表明,与BP网络、SVM及CNN对比,本文方法在保证训练时间的同时,识别精度达到98.58%.展开更多
针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习...针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习算法的火灾图像识别新方法。利用MPCANet建立火灾图像识别模型,通过MPCA算法学习滤波器作为深度学习网络卷积层卷积核,对张量对象的高维图像进行特征提取,并把蜡烛图像和烟花图像作为干扰。通过仿真实验并与其他火灾图像识别方法对比得到提出的图像识别方法识别精度达到了97.5%、误报率1.5%、漏报率1%。实验表明:该方法可以有效解决火灾图像识别存在的问题。展开更多
文摘在公路交通中,针对复杂环境下交通标志识别率不高的问题,提出了一种基于K-means对图像聚类,切割图像感兴趣区域(Regions of Interest, ROI),并利用方向梯度直方图特征(Histogram of Oriented Gradient, HOG)与卷积运算,特征加权(CNN-Squeeze)相结合的交通标志识别方法.首先,采用K-means对交通标志图像进行三角形、圆形图像二聚类,并利用制作的切割模板切割ROI并提取HOG特征;然后,利用卷积神经网络(Convolutional NeuralNetwork,CNN)对HOG特征进行过滤、降维,并通过Squeeze网络对过滤后的二次特征进行重要性标定;最后,训练该网络模型并实现对交通标志的识别.仿真结果表明,与BP网络、SVM及CNN对比,本文方法在保证训练时间的同时,识别精度达到98.58%.
文摘针对火灾发生时,火灾图像背景复杂、人工特征提取过程繁琐、对火灾图像的识别泛化能力不强、容易出现精度不高、误报和漏报等问题,提出了张量对象特征提取的多线性主成分分析(Multilinear Principal Component Analysis,MPCA)深度学习算法的火灾图像识别新方法。利用MPCANet建立火灾图像识别模型,通过MPCA算法学习滤波器作为深度学习网络卷积层卷积核,对张量对象的高维图像进行特征提取,并把蜡烛图像和烟花图像作为干扰。通过仿真实验并与其他火灾图像识别方法对比得到提出的图像识别方法识别精度达到了97.5%、误报率1.5%、漏报率1%。实验表明:该方法可以有效解决火灾图像识别存在的问题。