Cholesteric liquid crystal (CLC) has been widely used in flat optical elements due to the Pancharatnam–Berry(PB) phase modulation. In order to achieve PB phase modulation for both circular polarizations, it is natura...Cholesteric liquid crystal (CLC) has been widely used in flat optical elements due to the Pancharatnam–Berry(PB) phase modulation. In order to achieve PB phase modulation for both circular polarizations, it is natural to come up with stacking CLCs with opposite chirality. Here, various optical properties of diverse CLC stacking structures are systematically investigated by numerical calculations. With the thickness of the CLC sublayers becoming smaller, the reflection bandgap splits into three main parts, and the rotatory dispersion gradually becomes negligible. Vector beams provide a more intuitive verification. These results provide theoretical guidance for future studies on stacked chiral anisotropic media.展开更多
基金supported by the National Key R&D Program of China (No.2021YFA1202000)the National Natural Science Foundation of China (NSFC) (Nos.62222507,62175101,and 12004175)the Natural Science Foundation of Jiangsu Province (No.BK20212004)。
文摘Cholesteric liquid crystal (CLC) has been widely used in flat optical elements due to the Pancharatnam–Berry(PB) phase modulation. In order to achieve PB phase modulation for both circular polarizations, it is natural to come up with stacking CLCs with opposite chirality. Here, various optical properties of diverse CLC stacking structures are systematically investigated by numerical calculations. With the thickness of the CLC sublayers becoming smaller, the reflection bandgap splits into three main parts, and the rotatory dispersion gradually becomes negligible. Vector beams provide a more intuitive verification. These results provide theoretical guidance for future studies on stacked chiral anisotropic media.