We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity...We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range.Although Seebeck coefficient decreases due to the increase of carrier concentration,it still keeps relatively high values,especially in the middle and high temperature range.On this basis,the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility,and further improve the electrical transporting performance.In addition,due to the introduction of a large number of interfaces in the band-modulation samples,the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced.Finally,the maximal power factor(PF)of 5.18μW·cm^-1K^-2and the dimensionless thermoelectric figure of merits(ZT)of 0.81 are obtained from the 10%Ho modulation doped sample at 873 K.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.51674181。
文摘We try to use Ho doping combined with band modulation to adjust the thermoelectric properties for BiCuSeO.The results show that Ho doping can increase the carrier concentration and increase the electrical conductivity in the whole temperature range.Although Seebeck coefficient decreases due to the increase of carrier concentration,it still keeps relatively high values,especially in the middle and high temperature range.On this basis,the band-modulation sample can maintain relatively higher carrier concentration while maintaining relatively higher mobility,and further improve the electrical transporting performance.In addition,due to the introduction of a large number of interfaces in the band-modulation samples,the phonon scattering is enhanced effectively and the lattice thermal conductivity is reduced.Finally,the maximal power factor(PF)of 5.18μW·cm^-1K^-2and the dimensionless thermoelectric figure of merits(ZT)of 0.81 are obtained from the 10%Ho modulation doped sample at 873 K.