Li_(2)O_(2),as the discharge product of Li-O_(2) batteries on cathode,is difficult to be electrochemically decomposed,which will lead to short cycling lifespan of the batteries.In this study,the cycling lifespan of Li...Li_(2)O_(2),as the discharge product of Li-O_(2) batteries on cathode,is difficult to be electrochemically decomposed,which will lead to short cycling lifespan of the batteries.In this study,the cycling lifespan of Li-O_(2)battery was prolonged significantly by an efficient bifunctional catalyst.The Ni and N co-doped carbon nanotubes(Ni NCs)were synthesized firstly,and then RuO_(2) nanoparticles were deposited on Ni NCs by a hydrothermal route to synthesize RuO_(2)/Ni NC catalysts.Transmission electron microscopy and X-ray diffraction characterizations demonstrated that part of metallic Ni was converted into NiO and Ni(OH)2 after loading RuO_(2),and the existence of Ni O layer can prevent further oxidation of metallic Ni.The Li-O_(2)battery with RuO_(2)/Ni NC as the cathode catalyst exhibits an overpotential of 0.43 V,which is much lower than the value of 1.03 V measured with the Li-O_(2) battery using Ni NC as the cathode catalyst.At a rate of 200 mAg^(-1),the Li-O_(2) battery with the RuO_(2)/Ni NC cathode can maintain a reversible capacity of 500 mAhg^(-1)for 260 cycles,and 117 cycles with a higher reversible capacity of 1000 m A h g^(-1).The superior property of the RuO_(2)/NiNC bifunctional catalyst could be ascribed to the high activity of RuO_(2) and the rich carbon nanotube structure of NiNC for deposition and decomposition of Li_(2)O_(2).展开更多
基金financially supported by the National Natural Science Foundation of China(21875197)。
文摘Li_(2)O_(2),as the discharge product of Li-O_(2) batteries on cathode,is difficult to be electrochemically decomposed,which will lead to short cycling lifespan of the batteries.In this study,the cycling lifespan of Li-O_(2)battery was prolonged significantly by an efficient bifunctional catalyst.The Ni and N co-doped carbon nanotubes(Ni NCs)were synthesized firstly,and then RuO_(2) nanoparticles were deposited on Ni NCs by a hydrothermal route to synthesize RuO_(2)/Ni NC catalysts.Transmission electron microscopy and X-ray diffraction characterizations demonstrated that part of metallic Ni was converted into NiO and Ni(OH)2 after loading RuO_(2),and the existence of Ni O layer can prevent further oxidation of metallic Ni.The Li-O_(2)battery with RuO_(2)/Ni NC as the cathode catalyst exhibits an overpotential of 0.43 V,which is much lower than the value of 1.03 V measured with the Li-O_(2) battery using Ni NC as the cathode catalyst.At a rate of 200 mAg^(-1),the Li-O_(2) battery with the RuO_(2)/Ni NC cathode can maintain a reversible capacity of 500 mAhg^(-1)for 260 cycles,and 117 cycles with a higher reversible capacity of 1000 m A h g^(-1).The superior property of the RuO_(2)/NiNC bifunctional catalyst could be ascribed to the high activity of RuO_(2) and the rich carbon nanotube structure of NiNC for deposition and decomposition of Li_(2)O_(2).