传统的第三边值问题的解算方法有Molodensky算法和Stokes-Helmert算法两种。在Molodensky算法中使用的地形改正和Stokes-Helmert算法中使用的直接影响均由大地水准面外地形产生,因而必然存在关系。本文通过推导给出了直接影响是地形改...传统的第三边值问题的解算方法有Molodensky算法和Stokes-Helmert算法两种。在Molodensky算法中使用的地形改正和Stokes-Helmert算法中使用的直接影响均由大地水准面外地形产生,因而必然存在关系。本文通过推导给出了直接影响是地形改正、层间改正与压缩地形影响3项之和的结论。在此基础上,给出了直接影响的质量线平面积分算法、质量棱柱平面积分算法和地形改正的球面积分算法。此外本文还推导了布格球冠层间改正算法。通过实验得出,直接影响的质量线平面积分算法和质量棱柱平面积分算法与传统球面积分算法的差异分别为3.81和1.64 m Gal;地形改正球面积分算法与传统质量线、质量棱柱平面积分的差异分别为3.92和1.69 m Gal。该结果说明,本文推导的直接影响与地形改正的关系式是正确有效且实用的。展开更多
文摘传统的第三边值问题的解算方法有Molodensky算法和Stokes-Helmert算法两种。在Molodensky算法中使用的地形改正和Stokes-Helmert算法中使用的直接影响均由大地水准面外地形产生,因而必然存在关系。本文通过推导给出了直接影响是地形改正、层间改正与压缩地形影响3项之和的结论。在此基础上,给出了直接影响的质量线平面积分算法、质量棱柱平面积分算法和地形改正的球面积分算法。此外本文还推导了布格球冠层间改正算法。通过实验得出,直接影响的质量线平面积分算法和质量棱柱平面积分算法与传统球面积分算法的差异分别为3.81和1.64 m Gal;地形改正球面积分算法与传统质量线、质量棱柱平面积分的差异分别为3.92和1.69 m Gal。该结果说明,本文推导的直接影响与地形改正的关系式是正确有效且实用的。