期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于人脸识别的学生听课状态监测技术
被引量:
1
1
作者
兰禹
彭兴阔
+2 位作者
林青华
金科
刘国忠
《电子世界》
2019年第16期132-133,共2页
本文基于人脸表情识别技术为听课状态监测设计一种客观、公正、高效的系统。首先检测人脸并分割保存;用Eigenface特征脸法和PCA主成分分析对人脸进行特征提取、特征对比和分类进行身份识别和统计;最后将人脸提取HOG方向梯度特征,输入到...
本文基于人脸表情识别技术为听课状态监测设计一种客观、公正、高效的系统。首先检测人脸并分割保存;用Eigenface特征脸法和PCA主成分分析对人脸进行特征提取、特征对比和分类进行身份识别和统计;最后将人脸提取HOG方向梯度特征,输入到SVM支持向量机里进行表情判断,对其上课状态进行分类评级。结果表明:在严格可控的条件下,身份识别正确率为99.58%,状态分类评级正确率为95.06%。本文设计也可以应用于其他条件严格可控的场所。
展开更多
关键词
状态监测技术
人脸识别
人脸表情识别
学生
状态分类
监测设计
特征提取
主成分分析
下载PDF
职称材料
题名
基于人脸识别的学生听课状态监测技术
被引量:
1
1
作者
兰禹
彭兴阔
林青华
金科
刘国忠
机构
北京信息科技大学仪器科学与光电工程学院
出处
《电子世界》
2019年第16期132-133,共2页
基金
北京信息科技大学2018年大学生科技创新计划项目
文摘
本文基于人脸表情识别技术为听课状态监测设计一种客观、公正、高效的系统。首先检测人脸并分割保存;用Eigenface特征脸法和PCA主成分分析对人脸进行特征提取、特征对比和分类进行身份识别和统计;最后将人脸提取HOG方向梯度特征,输入到SVM支持向量机里进行表情判断,对其上课状态进行分类评级。结果表明:在严格可控的条件下,身份识别正确率为99.58%,状态分类评级正确率为95.06%。本文设计也可以应用于其他条件严格可控的场所。
关键词
状态监测技术
人脸识别
人脸表情识别
学生
状态分类
监测设计
特征提取
主成分分析
分类号
TP277 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于人脸识别的学生听课状态监测技术
兰禹
彭兴阔
林青华
金科
刘国忠
《电子世界》
2019
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部