A spoke cavity is a TEM-class superconducting resonator with particular advantages: compact structure and high shunt impedance. The 325 MHz β=0.40 (β=v/c, v is the velocity of particle and c is the velocity of li...A spoke cavity is a TEM-class superconducting resonator with particular advantages: compact structure and high shunt impedance. The 325 MHz β=0.40 (β=v/c, v is the velocity of particle and c is the velocity of light) single spoke cavity (Spoke040) is adopted for the Chinese ADS (Accelerator Driven Sub-critical System) project. The physics and mechanical design has been accomplished, and the fabrication of a prototype is currently in progress. In this paper, the optimization processes for the main radio frequency (RF) and mechanical parameters are analyzed in detail. Two kinds of cavity end-walls (flat and convex) are compared. The convex end-wall is preferred in order to improve mechanical performance of the cavity. Two and should be finished in early 2014. Vertical testing prototypes of the Spoke040 cavity are in the machining stage is also under preparation.展开更多
文摘A spoke cavity is a TEM-class superconducting resonator with particular advantages: compact structure and high shunt impedance. The 325 MHz β=0.40 (β=v/c, v is the velocity of particle and c is the velocity of light) single spoke cavity (Spoke040) is adopted for the Chinese ADS (Accelerator Driven Sub-critical System) project. The physics and mechanical design has been accomplished, and the fabrication of a prototype is currently in progress. In this paper, the optimization processes for the main radio frequency (RF) and mechanical parameters are analyzed in detail. Two kinds of cavity end-walls (flat and convex) are compared. The convex end-wall is preferred in order to improve mechanical performance of the cavity. Two and should be finished in early 2014. Vertical testing prototypes of the Spoke040 cavity are in the machining stage is also under preparation.