针对SV模型转换为线性状态空间形式之后带来的非高斯对数卡方误差,文章以高斯混合分布近似具有左偏长尾性质的对数卡方分布,得到状态空间SV-MG(SV with Mixture-of-Guass)模型。结合MCMC方法和EM算法估计SV模型参数和高斯混合参数,并利...针对SV模型转换为线性状态空间形式之后带来的非高斯对数卡方误差,文章以高斯混合分布近似具有左偏长尾性质的对数卡方分布,得到状态空间SV-MG(SV with Mixture-of-Guass)模型。结合MCMC方法和EM算法估计SV模型参数和高斯混合参数,并利用近似滤波(AMF)算法实现SV-MG模型的样本外预测。据此对沪深股市进行了实证研究。展开更多
本文考虑到金融收益率序列的"尖峰厚尾"和波动持续性等特征,针对厚尾SV-T模型的波动率样本外预测问题,提出了基于状态空间下的SV-T-MN(SV-T with Mixture-of-Normal)模型。首先根据MCMC方法估计SV-T模型参数,然后由EM算法估...本文考虑到金融收益率序列的"尖峰厚尾"和波动持续性等特征,针对厚尾SV-T模型的波动率样本外预测问题,提出了基于状态空间下的SV-T-MN(SV-T with Mixture-of-Normal)模型。首先根据MCMC方法估计SV-T模型参数,然后由EM算法估计混合正态参数,最后利用近似滤波(AMF)算法实现SV-T-MN模型的样本外预测。对KF、EKF、AMF进行的模拟研究表明高斯混合状态空间下的AMF更有效。通过对上证指数和深证成指的股指日收益率序列的实证研究结果表明,在五大损失函数评价准则下,基于状态空间SV-T-MN模型能有效刻画金融收益率序列和尾部的波动性,相比SV-N-MN模型具有更好的优越性。展开更多
文摘针对SV模型转换为线性状态空间形式之后带来的非高斯对数卡方误差,文章以高斯混合分布近似具有左偏长尾性质的对数卡方分布,得到状态空间SV-MG(SV with Mixture-of-Guass)模型。结合MCMC方法和EM算法估计SV模型参数和高斯混合参数,并利用近似滤波(AMF)算法实现SV-MG模型的样本外预测。据此对沪深股市进行了实证研究。
文摘本文考虑到金融收益率序列的"尖峰厚尾"和波动持续性等特征,针对厚尾SV-T模型的波动率样本外预测问题,提出了基于状态空间下的SV-T-MN(SV-T with Mixture-of-Normal)模型。首先根据MCMC方法估计SV-T模型参数,然后由EM算法估计混合正态参数,最后利用近似滤波(AMF)算法实现SV-T-MN模型的样本外预测。对KF、EKF、AMF进行的模拟研究表明高斯混合状态空间下的AMF更有效。通过对上证指数和深证成指的股指日收益率序列的实证研究结果表明,在五大损失函数评价准则下,基于状态空间SV-T-MN模型能有效刻画金融收益率序列和尾部的波动性,相比SV-N-MN模型具有更好的优越性。