期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于特征融合和粒子群优化算法的运动想象脑电信号识别方法 被引量:5
1
作者 郜东瑞 周晖 +3 位作者 冯李逍 张云霞 彭茂琴 张永清 《电子科技大学学报》 EI CAS CSCD 北大核心 2021年第3期467-475,共9页
由于运动想象脑电信号的信噪比较低,特征提取和特征选择比较困难,无法获得较高的分类准确率。针对上述问题,该文提取了时域、频域和空间域3个观察面的特征,并采用粒子群优化算法结合随机森林分类器来进行特征筛选。具体过程为,首先根据R... 由于运动想象脑电信号的信噪比较低,特征提取和特征选择比较困难,无法获得较高的分类准确率。针对上述问题,该文提取了时域、频域和空间域3个观察面的特征,并采用粒子群优化算法结合随机森林分类器来进行特征筛选。具体过程为,首先根据R2图来对信号进行带通滤波;其次,使用小波软阈值和得分共空间模式算法进行去噪和通道筛选;然后,通过3种算法提取时频域和空间域特征,待特征融合之后使用基于随机森林分类器的评价指标作为PSO的适应度函数,进行特征选择;最后,运用3种分类器以及集成分类器来验证效果。实验结果显示,通过特征融合以及特征选择可以去除冗余信息,保留有效信息,最终的分类正确率达到98.3%,为该技术在医疗康复等领域应用提供了新的方法。 展开更多
关键词 脑机接口 集成分类器 特征融合 特征选择 运动想象 粒子群优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部