期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于特征融合和粒子群优化算法的运动想象脑电信号识别方法
被引量:
5
1
作者
郜东瑞
周晖
+3 位作者
冯李逍
张云霞
彭茂琴
张永清
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第3期467-475,共9页
由于运动想象脑电信号的信噪比较低,特征提取和特征选择比较困难,无法获得较高的分类准确率。针对上述问题,该文提取了时域、频域和空间域3个观察面的特征,并采用粒子群优化算法结合随机森林分类器来进行特征筛选。具体过程为,首先根据R...
由于运动想象脑电信号的信噪比较低,特征提取和特征选择比较困难,无法获得较高的分类准确率。针对上述问题,该文提取了时域、频域和空间域3个观察面的特征,并采用粒子群优化算法结合随机森林分类器来进行特征筛选。具体过程为,首先根据R2图来对信号进行带通滤波;其次,使用小波软阈值和得分共空间模式算法进行去噪和通道筛选;然后,通过3种算法提取时频域和空间域特征,待特征融合之后使用基于随机森林分类器的评价指标作为PSO的适应度函数,进行特征选择;最后,运用3种分类器以及集成分类器来验证效果。实验结果显示,通过特征融合以及特征选择可以去除冗余信息,保留有效信息,最终的分类正确率达到98.3%,为该技术在医疗康复等领域应用提供了新的方法。
展开更多
关键词
脑机接口
集成分类器
特征融合
特征选择
运动想象
粒子群优化算法
下载PDF
职称材料
题名
基于特征融合和粒子群优化算法的运动想象脑电信号识别方法
被引量:
5
1
作者
郜东瑞
周晖
冯李逍
张云霞
彭茂琴
张永清
机构
成都信息工程大学计算机学院
电子科技大学生命科学与技术学院
电子科技大学计算机科学与工程学院
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021年第3期467-475,共9页
基金
国家自然科学基金(61702058)
四川省教育厅项目(18ZB0115)。
文摘
由于运动想象脑电信号的信噪比较低,特征提取和特征选择比较困难,无法获得较高的分类准确率。针对上述问题,该文提取了时域、频域和空间域3个观察面的特征,并采用粒子群优化算法结合随机森林分类器来进行特征筛选。具体过程为,首先根据R2图来对信号进行带通滤波;其次,使用小波软阈值和得分共空间模式算法进行去噪和通道筛选;然后,通过3种算法提取时频域和空间域特征,待特征融合之后使用基于随机森林分类器的评价指标作为PSO的适应度函数,进行特征选择;最后,运用3种分类器以及集成分类器来验证效果。实验结果显示,通过特征融合以及特征选择可以去除冗余信息,保留有效信息,最终的分类正确率达到98.3%,为该技术在医疗康复等领域应用提供了新的方法。
关键词
脑机接口
集成分类器
特征融合
特征选择
运动想象
粒子群优化算法
Keywords
brain computer interface
ensemble classifier
feature fusion
feature selection
motor imagery
PSO
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于特征融合和粒子群优化算法的运动想象脑电信号识别方法
郜东瑞
周晖
冯李逍
张云霞
彭茂琴
张永清
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2021
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部