行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型常常无法直接应用在另一个场景,并且从摄像头收集的数据通常包含敏感的个人信息,而现有的大部分重识别方法通常需要训练...行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型常常无法直接应用在另一个场景,并且从摄像头收集的数据通常包含敏感的个人信息,而现有的大部分重识别方法通常需要训练数据的集中化,这可能会带来隐私泄露问题.因此,文中提出面向隐私保护的联邦域泛化行人重识别方法(Federated Domain Generalization Person Re-identification with Privacy Preserving,PFReID),在保护行人隐私的前提下,从独立的多个非共享数据域中学习泛化模型.使用频域空间插值的方法平滑各个客户端在数据集上的域偏差,增加样本的多样性,提高各客户端模型的泛化性能.在客户端构建双分支对齐学习网络,保证客户端局部模型和全局模型学习表示的一致性,用于客户端局部模型的更新.在多个公开行人数据集上的实验验证PFReID的性能较优.展开更多
针对车辆重识别技术中难以通过全局外观特征准确识别不同车辆之间细微差异性的问题,提出一种基于局部感知的车辆重识别算法(local-aware based vehicle re-identification,LVR)。获取全局宏观特征以保留图像的上下文信息;利用空间变换...针对车辆重识别技术中难以通过全局外观特征准确识别不同车辆之间细微差异性的问题,提出一种基于局部感知的车辆重识别算法(local-aware based vehicle re-identification,LVR)。获取全局宏观特征以保留图像的上下文信息;利用空间变换网络的对齐模块对车辆图像进行分块,获取车辆局部细节信息;采用由粗到细的关键点检测方法获取局部关键点特征。在两个大型车辆数据集(即VeRi和VehicleID)上的评估结果表明,该算法具有较好的重识别效果。展开更多
文摘行人重识别旨在从不同的摄像头中识别目标行人的图像.由于不同场景之间存在域偏差,在一个场景中训练好的重识别模型常常无法直接应用在另一个场景,并且从摄像头收集的数据通常包含敏感的个人信息,而现有的大部分重识别方法通常需要训练数据的集中化,这可能会带来隐私泄露问题.因此,文中提出面向隐私保护的联邦域泛化行人重识别方法(Federated Domain Generalization Person Re-identification with Privacy Preserving,PFReID),在保护行人隐私的前提下,从独立的多个非共享数据域中学习泛化模型.使用频域空间插值的方法平滑各个客户端在数据集上的域偏差,增加样本的多样性,提高各客户端模型的泛化性能.在客户端构建双分支对齐学习网络,保证客户端局部模型和全局模型学习表示的一致性,用于客户端局部模型的更新.在多个公开行人数据集上的实验验证PFReID的性能较优.
文摘针对车辆重识别技术中难以通过全局外观特征准确识别不同车辆之间细微差异性的问题,提出一种基于局部感知的车辆重识别算法(local-aware based vehicle re-identification,LVR)。获取全局宏观特征以保留图像的上下文信息;利用空间变换网络的对齐模块对车辆图像进行分块,获取车辆局部细节信息;采用由粗到细的关键点检测方法获取局部关键点特征。在两个大型车辆数据集(即VeRi和VehicleID)上的评估结果表明,该算法具有较好的重识别效果。