针对夜间行人检测任务中存在的检测速度慢、漏检率高、黑夜场景下识别效果差等问题,提出一种改进YOLOv7的夜间行人检测算法。改进算法中,使用YOLOv7-tiny网络作为baseline,以满足准确率的同时兼具较高的检测速度,在网络head部分,使用CSP...针对夜间行人检测任务中存在的检测速度慢、漏检率高、黑夜场景下识别效果差等问题,提出一种改进YOLOv7的夜间行人检测算法。改进算法中,使用YOLOv7-tiny网络作为baseline,以满足准确率的同时兼具较高的检测速度,在网络head部分,使用CSP HorNet模块实现关键特征之间的高阶交互,并引入SimAM注意力机制,在不增加模型复杂度的情况下,使网络聚焦更多重要的特征信息。实验结果表明,改进算法在测试集上准确率(Precision,P)达到91.7%,召回率(Recall,R)达到81.4%,均值平均精度(mean Average Precision,mAP)提升2.9个百分点。改进算法在真实场景检测任务中,有效降低了漏检率及错检率,表现出良好的性能。展开更多
文摘针对夜间行人检测任务中存在的检测速度慢、漏检率高、黑夜场景下识别效果差等问题,提出一种改进YOLOv7的夜间行人检测算法。改进算法中,使用YOLOv7-tiny网络作为baseline,以满足准确率的同时兼具较高的检测速度,在网络head部分,使用CSP HorNet模块实现关键特征之间的高阶交互,并引入SimAM注意力机制,在不增加模型复杂度的情况下,使网络聚焦更多重要的特征信息。实验结果表明,改进算法在测试集上准确率(Precision,P)达到91.7%,召回率(Recall,R)达到81.4%,均值平均精度(mean Average Precision,mAP)提升2.9个百分点。改进算法在真实场景检测任务中,有效降低了漏检率及错检率,表现出良好的性能。