神经机器翻译凭借其良好性能成为目前机器翻译的主流方法,然而,神经机器翻译编码器能否学习到充分的语义信息一直是学术上亟待探讨的问题。为了探讨该问题,该文通过利用抽象语义表示(abstract meaning representation, AMR)所包含的语...神经机器翻译凭借其良好性能成为目前机器翻译的主流方法,然而,神经机器翻译编码器能否学习到充分的语义信息一直是学术上亟待探讨的问题。为了探讨该问题,该文通过利用抽象语义表示(abstract meaning representation, AMR)所包含的语义特征,分别从单词级别、句子级别两种不同的角度去分析神经机器翻译编码器究竟在多大程度上能够捕获到语义信息,并尝试利用额外的语义信息提高机器翻译性能。实验表明:首先神经机器翻译编码器能够学习到较好的单词级和句子级语义信息;其次,当神经机器翻译的训练集规模较小时,利用额外语义信息能够提高翻译性能。展开更多
抽象语义表示(abstract meaning representation,简称AMR)文本生成的任务是给定AMR图,生成与其语义一致的文本.相关工作表明,人工标注语料的规模大小直接影响了AMR文本生成的性能.为了降低对人工标注语料的依赖,提出了基于多任务预训练...抽象语义表示(abstract meaning representation,简称AMR)文本生成的任务是给定AMR图,生成与其语义一致的文本.相关工作表明,人工标注语料的规模大小直接影响了AMR文本生成的性能.为了降低对人工标注语料的依赖,提出了基于多任务预训练的AMR文本生成方法.特别地,基于大规模自动标注AMR语料,提出与AMR文本生成任务相关的3个预训练任务,分别是AMR降噪自编码、句子降噪自编码以及AMR文本生成任务本身.此外,基于预训练模型,在朴素微调方法的基础上,进一步提出了基于多任务训练的微调方法,使得最终模型不仅适用于AMR文本生成,同时还适用于预训练任务.基于两个AMR标准数据集的实验结果表明:使用0.39M自动标注数据,提出的预训练方法能够大幅度提高AMR文本生成的性能,在AMR2.0和AMR3.0上分别提高了12.27和7.57个BLEU值,性能分别达到40.30和38.97.其中,在AMR2.0上的性能为目前报告的最优值,在AMR3.0上的性能为目前为止首次报告的性能.展开更多
文摘神经机器翻译凭借其良好性能成为目前机器翻译的主流方法,然而,神经机器翻译编码器能否学习到充分的语义信息一直是学术上亟待探讨的问题。为了探讨该问题,该文通过利用抽象语义表示(abstract meaning representation, AMR)所包含的语义特征,分别从单词级别、句子级别两种不同的角度去分析神经机器翻译编码器究竟在多大程度上能够捕获到语义信息,并尝试利用额外的语义信息提高机器翻译性能。实验表明:首先神经机器翻译编码器能够学习到较好的单词级和句子级语义信息;其次,当神经机器翻译的训练集规模较小时,利用额外语义信息能够提高翻译性能。
文摘抽象语义表示(abstract meaning representation,简称AMR)文本生成的任务是给定AMR图,生成与其语义一致的文本.相关工作表明,人工标注语料的规模大小直接影响了AMR文本生成的性能.为了降低对人工标注语料的依赖,提出了基于多任务预训练的AMR文本生成方法.特别地,基于大规模自动标注AMR语料,提出与AMR文本生成任务相关的3个预训练任务,分别是AMR降噪自编码、句子降噪自编码以及AMR文本生成任务本身.此外,基于预训练模型,在朴素微调方法的基础上,进一步提出了基于多任务训练的微调方法,使得最终模型不仅适用于AMR文本生成,同时还适用于预训练任务.基于两个AMR标准数据集的实验结果表明:使用0.39M自动标注数据,提出的预训练方法能够大幅度提高AMR文本生成的性能,在AMR2.0和AMR3.0上分别提高了12.27和7.57个BLEU值,性能分别达到40.30和38.97.其中,在AMR2.0上的性能为目前报告的最优值,在AMR3.0上的性能为目前为止首次报告的性能.