期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合位置特征注意力与关系增强机制的远程监督关系抽取
1
作者
郑志蕴
徐亚媚
+2 位作者
李伦
张行进
李钝
《小型微型计算机系统》
CSCD
北大核心
2023年第12期2678-2684,共7页
实体关系抽取是构建知识图谱的主要任务之一,旨在确定句子中实体之间的关系类别.远程监督关系抽取方法通过将远程知识库与文本数据对齐来自动标记数据,已成为处理关系抽取任务的主要方式.为解决远程关系抽取不能充分利用单词之间的位置...
实体关系抽取是构建知识图谱的主要任务之一,旨在确定句子中实体之间的关系类别.远程监督关系抽取方法通过将远程知识库与文本数据对齐来自动标记数据,已成为处理关系抽取任务的主要方式.为解决远程关系抽取不能充分利用单词之间的位置关系信息,并且没有考虑重叠关系之间语义相关性的问题,本文提出一种融合位置特征注意力和关系增强机制的远程监督关系抽取模型.该模型使用基于高斯算法的位置特征注意力机制重新分配句子中单词的权重,并且采用分段卷积神经网络和词级注意力来捕获句子特征.然后,利用基于自注意力的关系增强机制来捕获重叠关系之间的语义关联.在NYT10公共数据集上的实验结果表明,本文模型的性能优于所比较的基线关系抽取模型.
展开更多
关键词
实体关系提取
远程监督
深度神经网络
位置特征注意力
关系增强机制
下载PDF
职称材料
题名
融合位置特征注意力与关系增强机制的远程监督关系抽取
1
作者
郑志蕴
徐亚媚
李伦
张行进
李钝
机构
郑州大学计算机与人工智能研究院
出处
《小型微型计算机系统》
CSCD
北大核心
2023年第12期2678-2684,共7页
基金
国家重点研发计划项目-公共安全专项(244)资助
科学基金项目(17BXW065)资助。
文摘
实体关系抽取是构建知识图谱的主要任务之一,旨在确定句子中实体之间的关系类别.远程监督关系抽取方法通过将远程知识库与文本数据对齐来自动标记数据,已成为处理关系抽取任务的主要方式.为解决远程关系抽取不能充分利用单词之间的位置关系信息,并且没有考虑重叠关系之间语义相关性的问题,本文提出一种融合位置特征注意力和关系增强机制的远程监督关系抽取模型.该模型使用基于高斯算法的位置特征注意力机制重新分配句子中单词的权重,并且采用分段卷积神经网络和词级注意力来捕获句子特征.然后,利用基于自注意力的关系增强机制来捕获重叠关系之间的语义关联.在NYT10公共数据集上的实验结果表明,本文模型的性能优于所比较的基线关系抽取模型.
关键词
实体关系提取
远程监督
深度神经网络
位置特征注意力
关系增强机制
Keywords
entity relation extraction
distant supervision
deep neural networks
position feature attention
relation enhancement mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合位置特征注意力与关系增强机制的远程监督关系抽取
郑志蕴
徐亚媚
李伦
张行进
李钝
《小型微型计算机系统》
CSCD
北大核心
2023
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部