Full-spectrum photofixation of N_(2) with remarkable NH_(3) production rate of 228μmol/(g·h)was achieved by W atoms doped Ti_(3)C_(2)T_(x)MXene(W/Ti_(3)C_(2)T_(x)-U)catalyst without sacrificial agents at room te...Full-spectrum photofixation of N_(2) with remarkable NH_(3) production rate of 228μmol/(g·h)was achieved by W atoms doped Ti_(3)C_(2)T_(x)MXene(W/Ti_(3)C_(2)T_(x)-U)catalyst without sacrificial agents at room temperature.The effects of W doping and ultrasonic intercalation of Ti_(3)C_(2)T_(x)MXene were studied.Scanning transmission electron microscope,electron spin resonance spectra,X-ray photoemission spectroscopy,UV-Vis spectrophotometer,temperature programmed adsorption analyzer and density functional theory calculation were used to characterize the obtained catalysts.Results showed that Ti_(3)C_(2)T_(x)MXene harvested ultraviolet-visible and near-infrared light to generate hot electrons.In addition,the doped W atoms played an effective role in adsorbing and activating N_(2) molecules by donating electrons to the anti-bonding orbital of N_(2) molecules to elongate the bond length of N≡N.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51801235,11875258,11505187,51374255,51802356,51572299,41701359)the Natural Science Foundation of Hunan Province,China(No.2020JJ5690)。
文摘Full-spectrum photofixation of N_(2) with remarkable NH_(3) production rate of 228μmol/(g·h)was achieved by W atoms doped Ti_(3)C_(2)T_(x)MXene(W/Ti_(3)C_(2)T_(x)-U)catalyst without sacrificial agents at room temperature.The effects of W doping and ultrasonic intercalation of Ti_(3)C_(2)T_(x)MXene were studied.Scanning transmission electron microscope,electron spin resonance spectra,X-ray photoemission spectroscopy,UV-Vis spectrophotometer,temperature programmed adsorption analyzer and density functional theory calculation were used to characterize the obtained catalysts.Results showed that Ti_(3)C_(2)T_(x)MXene harvested ultraviolet-visible and near-infrared light to generate hot electrons.In addition,the doped W atoms played an effective role in adsorbing and activating N_(2) molecules by donating electrons to the anti-bonding orbital of N_(2) molecules to elongate the bond length of N≡N.