期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于transformer的python命名实体识别模型
被引量:
2
1
作者
徐关友
冯伟森
《计算机应用》
CSCD
北大核心
2022年第9期2693-2700,共8页
最近一些基于字符的命名实体识别(NER)模型无法充分利用词信息,而利用词信息的格子结构模型可能会退化为基于词的模型而出现分词错误。针对这些问题提出了一种基于transformer的python NER模型来编码字符-词信息。首先,将词信息与词开...
最近一些基于字符的命名实体识别(NER)模型无法充分利用词信息,而利用词信息的格子结构模型可能会退化为基于词的模型而出现分词错误。针对这些问题提出了一种基于transformer的python NER模型来编码字符-词信息。首先,将词信息与词开始或结束对应的字符绑定;然后,利用三种不同的策略,将词信息通过transformer编码为固定大小的表示;最后,使用条件随机场(CRF)解码,从而避免获取词边界信息带来的分词错误,并提升批量训练速度。在python数据集上的实验结果可以看出,所提模型的F1值比Lattice-LSTM模型高2.64个百分点,同时训练时间是对比模型的1/4左右,说明所提模型能够防止模型退化,提升批量训练速度,更好地识别python命名实体。
展开更多
关键词
命名实体识别
词边界
PYTHON
词信息
TRANSFORMER
下载PDF
职称材料
题名
基于transformer的python命名实体识别模型
被引量:
2
1
作者
徐关友
冯伟森
机构
四川大学计算机学院
出处
《计算机应用》
CSCD
北大核心
2022年第9期2693-2700,共8页
文摘
最近一些基于字符的命名实体识别(NER)模型无法充分利用词信息,而利用词信息的格子结构模型可能会退化为基于词的模型而出现分词错误。针对这些问题提出了一种基于transformer的python NER模型来编码字符-词信息。首先,将词信息与词开始或结束对应的字符绑定;然后,利用三种不同的策略,将词信息通过transformer编码为固定大小的表示;最后,使用条件随机场(CRF)解码,从而避免获取词边界信息带来的分词错误,并提升批量训练速度。在python数据集上的实验结果可以看出,所提模型的F1值比Lattice-LSTM模型高2.64个百分点,同时训练时间是对比模型的1/4左右,说明所提模型能够防止模型退化,提升批量训练速度,更好地识别python命名实体。
关键词
命名实体识别
词边界
PYTHON
词信息
TRANSFORMER
Keywords
Named Entity Recognition(NER)
word boundary
python
word information
transformer
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于transformer的python命名实体识别模型
徐关友
冯伟森
《计算机应用》
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部