针对传统云检测算法对噪声敏感、提取轮廓不精确等问题,提出一种结合语义分割神经网络结构U-Net和后处理算法TTA(test time augmentation)的云检测方法,实现了高精度云检测的同时还很好地保留了云边缘轮廓。首先,利用U-Net网络的U型结...针对传统云检测算法对噪声敏感、提取轮廓不精确等问题,提出一种结合语义分割神经网络结构U-Net和后处理算法TTA(test time augmentation)的云检测方法,实现了高精度云检测的同时还很好地保留了云边缘轮廓。首先,利用U-Net网络的U型结构挖掘云覆盖区域像元高级、低级特征;其次,通过TTA增强待云检测的影像特征,提升模型鲁棒性。实验结果表明,结合U-Net结构和TTA的云检测精度达到93.2%,高于其他传统算法约5%,解决了经典算法对噪声敏感的缺点,提高了仅使用U-Net时的云检测精度。展开更多
文摘针对传统云检测算法对噪声敏感、提取轮廓不精确等问题,提出一种结合语义分割神经网络结构U-Net和后处理算法TTA(test time augmentation)的云检测方法,实现了高精度云检测的同时还很好地保留了云边缘轮廓。首先,利用U-Net网络的U型结构挖掘云覆盖区域像元高级、低级特征;其次,通过TTA增强待云检测的影像特征,提升模型鲁棒性。实验结果表明,结合U-Net结构和TTA的云检测精度达到93.2%,高于其他传统算法约5%,解决了经典算法对噪声敏感的缺点,提高了仅使用U-Net时的云检测精度。