期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多深度特征增强与顶层信息引导的边缘检测网络
1
作者 朱威 岑宽 +1 位作者 徐希舟 何德峰 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1705-1714,共10页
针对现有边缘检测网络在复杂自然场景下的检测结果仍存在边缘缺失、噪声过多等问题,提出多深度特征增强与顶层信息引导的边缘检测网络.首先,采用UNet++作为主干网络提取不同深度的特征,并通过特征叠加使不同尺度的边缘更加完整;然后,在... 针对现有边缘检测网络在复杂自然场景下的检测结果仍存在边缘缺失、噪声过多等问题,提出多深度特征增强与顶层信息引导的边缘检测网络.首先,采用UNet++作为主干网络提取不同深度的特征,并通过特征叠加使不同尺度的边缘更加完整;然后,在每个卷积层的侧输出后添加特征增强模块,通过引入空洞卷积增大感受野,增强多尺度信息;最后,设计顶层信息引导模块,通过在跳跃连接中引入高层的语义特征增强边缘检测效果.实验结果表明,在BSDS500,NYUDv2和Multicue这3个数据集上进行训练均取得了较好的效果,其中,BSDS500数据集上的ODS,OIS和AP指标分别达到了0.821,0.839和0.869,整体上高于现有边缘检测网络,且噪声少,主观效果也更接近真值. 展开更多
关键词 边缘检测网络 UNet++ 多深度特征 特征增强 顶层信息引导
下载PDF
边缘概率分布引导的结直肠息肉高分辨率分割网络
2
作者 林佳俐 李永强 +1 位作者 徐希舟 冯远静 《中国图象图形学报》 CSCD 北大核心 2023年第12期3897-3910,共14页
目的结直肠息肉检测可以有效预防癌变,然而人工诊断往往存在较高漏检率,使用深度学习技术可以提供有助于诊断的细粒度信息,辅助医生进行筛查。实际场景中,息肉形态各异和息肉边缘模糊的特点会严重影响算法的准确性。针对这一问题,提出... 目的结直肠息肉检测可以有效预防癌变,然而人工诊断往往存在较高漏检率,使用深度学习技术可以提供有助于诊断的细粒度信息,辅助医生进行筛查。实际场景中,息肉形态各异和息肉边缘模糊的特点会严重影响算法的准确性。针对这一问题,提出了一种边缘概率分布模型引导的结直肠息肉分割网络(edge distribution guided high-resolution network,HRNetED)。方法本文所提的HRNetED网络使用HRNet结构作为网络主干,设计了一种堆叠残差卷积模块,显著降低模型参数量的同时提高模型性能;此外,本文使用边缘概率分布模型来描述息肉边缘,提高模型对边缘检测的稳定性;最后,本文在多尺度解码器中引入边缘检测任务,以加强模型对息肉边缘的感知。结果本文在Kvasir-Seg(Kvasir segmentation dataset)、ETIS(ETIS larib polyp database)、CVC-ColonDB(colonoscopy videos challenge colon database)、CVC-ClinicDB(colonoscopy videos challenge clinic database)和CVC-300(colonoscopy videos challenge 300)5个数据集上进行测试。最终,HRNetED在CVC-ClinicDB和CVC-300数据集上的Dice系数(Dice similarity coefficient)和平均交并比(mean intersection over union,mIoU)指标均优于对比算法,且在CVCClinicDB数据集上相较于对比最优模型分别获得了1.25%和1.37%的提升;在ETIS数据集上,Dice系数表现优于对比最优算法;在CVC-ColonDB数据集上,Dice和mIoU处于较优水平。此外,HRNetED在Kvasir-Seg、ETIS、CVCColonDB数据集上的HD95距离相较于对比最优算法分别降低了0.315%、29.19%和2.95%,在CVC-ClinicDB和CVC-300数据集上表现为次优,同样具有良好的性能。结论本文提出的HRNetED网络在多个数据集中表现稳定,对于小目标、模糊息肉有较好的感知能力,对息肉轮廓检测能力更强。 展开更多
关键词 医学图像处理 息肉分割 深度学习 高分辨率网络 边缘检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部