Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an ...Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results.展开更多
Real epidemic spreading networks are often composed of several kinds of complex networks interconnected with each other, such as Lyme disease, and the interrelated networks may have different topologies and epidemic d...Real epidemic spreading networks are often composed of several kinds of complex networks interconnected with each other, such as Lyme disease, and the interrelated networks may have different topologies and epidemic dynamics. Moreover, most human infectious diseases are derived from animals, and zoonotic infections always spread on directed interconnected networks. So, in this article, we consider the epidemic dynamics of zoonotic infections on a unidirectional circular-coupled network. Here, we construct two unidirectional three-layer circular interactive networks, one model has direct contact between interactive networks, the other model describes diseases transmitted through vectors between interactive networks, which are established by introducing the heterogeneous mean-field approach method. Then we obtain the basic reproduction numbers and stability of equilibria of the two models. Through mathematical analysis and numerical simulations, it is found that basic reproduction numbers of the models depend on the infection rates, infection periods, average degrees, and degree ratios. Numerical simulations illustrate and expand these theoretical results very well.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61004101,11161013,and 61164020)the Natural Science Foundation of Guangxi Province,China(Grant Nos.2011GXNSFB018059 and 2013GXNSFAA019006)+2 种基金the 2012 Open Grant of Guangxi Key Lab of Wireless Wideband Communication and Signal Processing,Chinathe 2012 Open Grant of the State Key Laboratory of Integrated Services Networks of Xidian University,Chinathe Graduate Education Innovation Project of Guilin University of Electronic Technology,China(Grant No.GDYCSZ201472)
文摘Recent research results indicate that individual awareness can play an important influence on epidemic spreading in networks. By local stability analysis, a significant conclusion is that the embedded awareness in an epidemic network can increase its epidemic threshold. In this paper, by using limit theory and dynamical system theory, we further give global stability analysis of a susceptible-infected-susceptible (SIS) epidemic model on networks with awareness. Results show that the obtained epidemic threshold is also a global stability condition for its endemic equilibrium, which implies the embedded awareness can enhance the epidemic threshold globally. Some numerical examples are presented to verify the theoretical results.
基金supported by the National Natural Science Foundation of China(11572181,11331009)
文摘Real epidemic spreading networks are often composed of several kinds of complex networks interconnected with each other, such as Lyme disease, and the interrelated networks may have different topologies and epidemic dynamics. Moreover, most human infectious diseases are derived from animals, and zoonotic infections always spread on directed interconnected networks. So, in this article, we consider the epidemic dynamics of zoonotic infections on a unidirectional circular-coupled network. Here, we construct two unidirectional three-layer circular interactive networks, one model has direct contact between interactive networks, the other model describes diseases transmitted through vectors between interactive networks, which are established by introducing the heterogeneous mean-field approach method. Then we obtain the basic reproduction numbers and stability of equilibria of the two models. Through mathematical analysis and numerical simulations, it is found that basic reproduction numbers of the models depend on the infection rates, infection periods, average degrees, and degree ratios. Numerical simulations illustrate and expand these theoretical results very well.