期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法
1
作者
单中原
杨恺
+2 位作者
赵俊峰
王亚沙
徐涌鑫
《计算机科学》
CSCD
北大核心
2023年第1期18-24,共7页
在智慧城市领域中,随着信息化技术的不断深入,各信息系统产生的海量数据不断增长,这些多源异构数据之间的语义互通成为了城市智能应用开发需要解决的重要问题之一。构建知识图谱是解决数据语义互通的常用手段之一。在建立知识图谱本体...
在智慧城市领域中,随着信息化技术的不断深入,各信息系统产生的海量数据不断增长,这些多源异构数据之间的语义互通成为了城市智能应用开发需要解决的重要问题之一。构建知识图谱是解决数据语义互通的常用手段之一。在建立知识图谱本体模型后,图谱实例模型的构建演化就成为支撑基于图谱的各类应用的关键技术。为此,如何将不断更新的数据源中的知识实例尽可能自动化地扩充到知识图谱中,成为了图谱构建的首要问题。现有的一些知识实例生成工具对数据导入的支持力度不足,用户需要对源数据进行复杂的预处理,将其转化为符合平台支持的导入数据格式。这导致预处理工作量大,且不能迅速地应对数据不断更新增长的情况。由于智慧城市领域中信息系统所产生的数据多为结构化或半结构化数据,文中提出一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法,面向结构化或半结构化数据生成实例,并随着数据的更新,实现图谱实例模型的增长与演化。文中方法结合机器推荐与人机协同交互设计,针对不同数据源的特征抽取知识并将其正确地映射到本体模型中的概念实体上,实现领域知识图谱实例模型的增量扩充;并通过实体对齐、关系补全等方法,支持实例模型的持续演化。文中方法在企业信息领域知识图谱的构建场景中得到了验证,通过机器推荐和不去重,实现了实例高效且准确的生成,其有效性也得到了证实。
展开更多
关键词
知识图谱
本体模型
数据模式
人机交互
下载PDF
职称材料
时序知识图谱表示学习
被引量:
6
2
作者
徐涌鑫
赵俊峰
+2 位作者
王亚沙
谢冰
杨恺
《计算机科学》
CSCD
北大核心
2022年第9期162-171,共10页
知识图谱作为一种结构化的人类知识形式,对海量多源异构异质的数据语义互通起到了很好的支撑作用,并有效地支持了数据分析等任务,成为了近年来学术界和工业界的研究热点。目前大多数知识图谱都是根据非实时的静态数据构建,没有考虑实体...
知识图谱作为一种结构化的人类知识形式,对海量多源异构异质的数据语义互通起到了很好的支撑作用,并有效地支持了数据分析等任务,成为了近年来学术界和工业界的研究热点。目前大多数知识图谱都是根据非实时的静态数据构建,没有考虑实体和关系的时间特性。然而社交网络通信、金融贸易、疫情传播网络等应用场景的数据具有实时动态的特点以及复杂的时间特性,如何利用时序数据构建知识图谱并且对该知识图谱进行有效建模是一个具有挑战性的问题。目前,有许多研究工作利用时序数据中的时间信息丰富知识图谱的特征,赋予知识图谱动态特征,将事实三元组拓展为(头实体,关系,尾实体,时间)的四元组表示,使用时间相关四元组进行知识表示的知识图谱被统称为时序知识图谱。文中对时序知识图谱相关文献进行整理和分析,并对时序知识图谱表示学习的工作进行了全面综述。具体地,首先简单介绍了时序知识图谱的背景与定义;其次总结了时序知识图谱表示学习方法相比传统知识图谱表示学习方法的优点;然后从事实的建模方法角度详细阐述了时序知识图谱表示学习的主要方法,并且介绍了上述方法使用到的数据集;最后对该技术的主要挑战进行了总结,并对其未来研究方向进行了展望。
展开更多
关键词
知识图谱
深度学习
表示学习
时间信息
动态过程
下载PDF
职称材料
题名
一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法
1
作者
单中原
杨恺
赵俊峰
王亚沙
徐涌鑫
机构
北京大学计算机学院
高可信软件技术教育部重点实验室
北京大学(天津滨海)新一代信息技术研究院
出处
《计算机科学》
CSCD
北大核心
2023年第1期18-24,共7页
基金
国家自然科学基金(62172011)。
文摘
在智慧城市领域中,随着信息化技术的不断深入,各信息系统产生的海量数据不断增长,这些多源异构数据之间的语义互通成为了城市智能应用开发需要解决的重要问题之一。构建知识图谱是解决数据语义互通的常用手段之一。在建立知识图谱本体模型后,图谱实例模型的构建演化就成为支撑基于图谱的各类应用的关键技术。为此,如何将不断更新的数据源中的知识实例尽可能自动化地扩充到知识图谱中,成为了图谱构建的首要问题。现有的一些知识实例生成工具对数据导入的支持力度不足,用户需要对源数据进行复杂的预处理,将其转化为符合平台支持的导入数据格式。这导致预处理工作量大,且不能迅速地应对数据不断更新增长的情况。由于智慧城市领域中信息系统所产生的数据多为结构化或半结构化数据,文中提出一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法,面向结构化或半结构化数据生成实例,并随着数据的更新,实现图谱实例模型的增长与演化。文中方法结合机器推荐与人机协同交互设计,针对不同数据源的特征抽取知识并将其正确地映射到本体模型中的概念实体上,实现领域知识图谱实例模型的增量扩充;并通过实体对齐、关系补全等方法,支持实例模型的持续演化。文中方法在企业信息领域知识图谱的构建场景中得到了验证,通过机器推荐和不去重,实现了实例高效且准确的生成,其有效性也得到了证实。
关键词
知识图谱
本体模型
数据模式
人机交互
Keywords
Knowledge graph
Ontology
Schema
Human-machine interaction
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
时序知识图谱表示学习
被引量:
6
2
作者
徐涌鑫
赵俊峰
王亚沙
谢冰
杨恺
机构
北京大学计算机学院
高可信软件技术教育部重点实验室
北京大学(天津滨海)新一代信息技术研究院
出处
《计算机科学》
CSCD
北大核心
2022年第9期162-171,共10页
基金
国家自然科学基金(62172011)。
文摘
知识图谱作为一种结构化的人类知识形式,对海量多源异构异质的数据语义互通起到了很好的支撑作用,并有效地支持了数据分析等任务,成为了近年来学术界和工业界的研究热点。目前大多数知识图谱都是根据非实时的静态数据构建,没有考虑实体和关系的时间特性。然而社交网络通信、金融贸易、疫情传播网络等应用场景的数据具有实时动态的特点以及复杂的时间特性,如何利用时序数据构建知识图谱并且对该知识图谱进行有效建模是一个具有挑战性的问题。目前,有许多研究工作利用时序数据中的时间信息丰富知识图谱的特征,赋予知识图谱动态特征,将事实三元组拓展为(头实体,关系,尾实体,时间)的四元组表示,使用时间相关四元组进行知识表示的知识图谱被统称为时序知识图谱。文中对时序知识图谱相关文献进行整理和分析,并对时序知识图谱表示学习的工作进行了全面综述。具体地,首先简单介绍了时序知识图谱的背景与定义;其次总结了时序知识图谱表示学习方法相比传统知识图谱表示学习方法的优点;然后从事实的建模方法角度详细阐述了时序知识图谱表示学习的主要方法,并且介绍了上述方法使用到的数据集;最后对该技术的主要挑战进行了总结,并对其未来研究方向进行了展望。
关键词
知识图谱
深度学习
表示学习
时间信息
动态过程
Keywords
Knowledge graph
Deep learning
Representation learning
Temporal information
Dynamic process
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种增量式本体模型与数据模式映射的图谱实例模型构建演化方法
单中原
杨恺
赵俊峰
王亚沙
徐涌鑫
《计算机科学》
CSCD
北大核心
2023
0
下载PDF
职称材料
2
时序知识图谱表示学习
徐涌鑫
赵俊峰
王亚沙
谢冰
杨恺
《计算机科学》
CSCD
北大核心
2022
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部