实现“碳达峰、碳中和”的战略目标,需要发展以可再生能源为主体的新型电力系统,储能可有效缓解其间歇性、不稳定性和周期性的问题,实现高比例可再生能源的并网和消纳。压缩空气储能(compressed air energy storage,CAES)具有规模大、...实现“碳达峰、碳中和”的战略目标,需要发展以可再生能源为主体的新型电力系统,储能可有效缓解其间歇性、不稳定性和周期性的问题,实现高比例可再生能源的并网和消纳。压缩空气储能(compressed air energy storage,CAES)具有规模大、成本低、效率高等优势,被认为是最具有发展前景的大规模储能技术。该文回顾压缩空气储能技术与可再生能源耦合研究进展,包括压缩空气储能–风/光耦合系统、压缩空气储能–生物质能耦合系统、压缩空气储能–氢能耦合系统、压缩空气储能–地热能耦合系统等,并总结各种耦合系统的工作原理、性能参数等,较为全面地总结各种耦合系统的工作原理、运行与性能参数等,关键参数包括工作压力、功率、效率、成本等,并对上述系统的关键参数进行对比。研究可为大规模压缩空气储能与可再生能源的发展与应用提供一定参考。展开更多
文摘实现“碳达峰、碳中和”的战略目标,需要发展以可再生能源为主体的新型电力系统,储能可有效缓解其间歇性、不稳定性和周期性的问题,实现高比例可再生能源的并网和消纳。压缩空气储能(compressed air energy storage,CAES)具有规模大、成本低、效率高等优势,被认为是最具有发展前景的大规模储能技术。该文回顾压缩空气储能技术与可再生能源耦合研究进展,包括压缩空气储能–风/光耦合系统、压缩空气储能–生物质能耦合系统、压缩空气储能–氢能耦合系统、压缩空气储能–地热能耦合系统等,并总结各种耦合系统的工作原理、性能参数等,较为全面地总结各种耦合系统的工作原理、运行与性能参数等,关键参数包括工作压力、功率、效率、成本等,并对上述系统的关键参数进行对比。研究可为大规模压缩空气储能与可再生能源的发展与应用提供一定参考。