期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
重参数化YOLOv5s的森林火灾检测算法
1
作者 杨武 余华云 +2 位作者 赵昕宇 何勇 徐红牛 《无线电工程》 2024年第2期284-293,共10页
目前森林火灾多发,建立日常监测尤为重要,但是边缘智能检测设备算力和内存较低,限制了检测模型的推理和部署。针对以上问题,提出一种改进的重参数化YOLOv5s的森林火灾检测算法,结合重参数化、通道重排和深度可分离卷积(Depthwise Separa... 目前森林火灾多发,建立日常监测尤为重要,但是边缘智能检测设备算力和内存较低,限制了检测模型的推理和部署。针对以上问题,提出一种改进的重参数化YOLOv5s的森林火灾检测算法,结合重参数化、通道重排和深度可分离卷积(Depthwise Separable Convolution,DSC)等轻量化思想分别设计新的骨干和颈部网络,增强特征提取能力,提高模型检测精度,使参数量和推理权重较大幅度减少。为避免颈部网络的信息丢失,根据空洞卷积提出特征增强模块,增强多尺度特征融合能力。为进一步提高模型性能,加入轻量化的CA注意力机制,更准确定位目标。当前公开的火焰烟雾数据集存在针对性不强的问题,为了更好地提高模型的检测效率,制作了一个新的森林火灾数据集,在数据集上利用结构相似性算法剔除了相似度过高的图片,保证了模型的泛化能力。实验结果表明,改进后的重参数化YOLOv5s以原网络约76%的参数量提高了4.0%的精确度,推理权重下降至10.5 MB,更适合于设备性能差、容量小的边缘设备,提高了森林火灾巡检的效率。 展开更多
关键词 森林火灾 YOLOv5s 重参数化 深度可分离卷积 多尺度特征融合
下载PDF
基于改进YOLO模型的工业铝片缺陷检测
2
作者 徐红牛 余华云 《组合机床与自动化加工技术》 北大核心 2023年第9期106-111,共6页
针对目前铝片表面缺陷的目标检测存在很多问题,包括现场大规模算法和计算设备的不适用性,以及检测速度和精度之间的平衡等,提出了一种基于注意力机制的新颖轻量级检测方法。在YOLOv4框架的基础上提出GBANet主干网络,其基于一个新的卷积G... 针对目前铝片表面缺陷的目标检测存在很多问题,包括现场大规模算法和计算设备的不适用性,以及检测速度和精度之间的平衡等,提出了一种基于注意力机制的新颖轻量级检测方法。在YOLOv4框架的基础上提出GBANet主干网络,其基于一个新的卷积Ghost模块构建并将改进的注意力模块嵌入在堆叠的Ghost块中。对颈部网络进行了特征融合的重新设计和轻量化,增加感受野,通过SPPF-PANet模块简化网络并通过改进anchor box和损失函数等措施增强模型对缺陷对象精确性。实验表明,所提方法较原YOLOv4提高1.06%的mAP,检测速度达到了36.6 fps,模型体积减少了82.72%,并能有效识别铝型材表面不同种类的缺陷。所提方法能够满足铝型材工厂生产现场缺陷检测要求。 展开更多
关键词 目标检测 铝材表面缺陷 YOLOv4 注意力机制 卷积神经网络
下载PDF
基于ARIMA-LSTM-XGBoost组合模型的铁路货运量预测 被引量:4
3
作者 龙宇 许浩然 +2 位作者 余华云 何勇 徐红牛 《科学技术与工程》 北大核心 2023年第25期10879-10886,共8页
为提升铁路货运量预测精度和泛化能力,综合考虑铁路货运量时间序列数据的线性和非线性特征,提出了基于ARIMA-LSTM-XGBoost组合模型的铁路货运量预测方法。首先,使用差分整合移动平均自回归(autoregressive integrated moving average, A... 为提升铁路货运量预测精度和泛化能力,综合考虑铁路货运量时间序列数据的线性和非线性特征,提出了基于ARIMA-LSTM-XGBoost组合模型的铁路货运量预测方法。首先,使用差分整合移动平均自回归(autoregressive integrated moving average, ARIMA)模型对中国铁路货运量进行初步预测;其次,利用长短时间记忆(long short-term memory, LSTM)神经网络对残差进行校正,并将其与极端梯度提升(extreme gradient boosting, XGBoost)模型结合,采用误差倒数法确定权重,构建一种加权组合模型;最后,将组合模型与ARIMA、ARIMA-LSTM、LSTM、XGBoost模型进行对比,借助均方误差(mean square error, MSE)、均方根误差(root mean squared error, RMSE)、平均绝对值误差(mean absolute error, MAE)、平均绝对百分比误差(mean absolute percentage error, MAPE)对上述模型的预测精度进行对比分析。使用2007—2021年全国铁路货运量月度数据进行实验,实验结果表明:组合模型的MSE、RMSE、MAE、MAPE分别为0.011 9、0.109 4、0.068 3、1.775 2%,预测误差均低于上述对比模型,模型的预测精度和泛化能力都有所提升。 展开更多
关键词 铁路货运量预测 ARIMA LSTM XGBoost 组合模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部