期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于可解释机器学习的信用债违约研究 被引量:2
1
作者 徐舒玥 曹艳华 《科学决策》 CSSCI 2023年第5期190-200,共11页
为解决传统信用风险预测模型的非均衡样本识别不足问题,利用过采样方法和机器学习算法,提升信用债违约预测模型的准确率及稳定性。引入盈利能力、现金流量、营运能力、资本结构、偿债能力5类财务指标和非财务指标,运用SMOTE、Borderline... 为解决传统信用风险预测模型的非均衡样本识别不足问题,利用过采样方法和机器学习算法,提升信用债违约预测模型的准确率及稳定性。引入盈利能力、现金流量、营运能力、资本结构、偿债能力5类财务指标和非财务指标,运用SMOTE、Borderline SMOTE、ADASYN方法解决样本不均衡问题,通过逻辑回归、支持向量机、随机森林、XGBoost进行风险识别。结论:对于非均衡信用债违约样本,1000次有放回bootstrap重复抽样下ADASYN-RF模型的AUC、Recall优于LR、SVM和RF模型;ADASYN-SVM模型违约样本实际Recall较不使用过采样法提升36.86个百分点。引入可解释性机器学习方法,发现带息债务/全部投入资本、地方财政收入/债务存量、资产负债率等是信用债违约的重要影响因素。 展开更多
关键词 信用债违约风险 非平衡样本 可解释性机器学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部