In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both c...In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.展开更多
Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limi...Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limit of pressure detection with high gauge factor, which is closely dependent on the mechanical and electrical properties and determined by the fabrication process, is still demanded. Here, γ-ray irradiation reduced GS is reported to possess a gauge factor of 1.03 kPa^–1 with pressure detection limit of 10 Pa and high stress retention of 76% after 800 cycles of compressing/relaxation at strain of 50%. Compared with the carbon nanotube(CNT) reinforced GS, the improved lower limit of pressure detection and gauge factor of the GS prepared by γ-ray irradiation is due to the low compression stress(0.9 kPa at stain of 50%). These excellent physical properties of the GS are ascribed to the mild,residual free, and controllable reduction process offered by γ-ray irradiation.展开更多
基金supported by the National Natural Science Foundation of China(No.21503064)Anhui Provincial Natural Science Foundation(No.1508085QE103)the 100 Talents Program of the Chinese Academy of Sciences。
文摘In recent years,flexible pressure sensors have attracted much attention owing to their potential applications in motion detection and wearable electronics.As a result,important innovations have been reported in both conductive materials and the underlying substrates,which are the two crucial components of a pressure sensor.1D materials like nanowires are being widely used as the conductive materials in flexible pressure sensors,but such sensors usually exhibit low performances mainly due to the lack of strong interfacial interactions between the substrates and 1D materials.In this paper,we report the use of graphene/graphene scrolls hybrid multilayers films as the conductive material and a microstructured polydimethylsiloxane substrate using Epipremnum aureum leaf as the template to fabricate highly sensitive pressure sensors.The 2D structure of graphene allows to strongly anchor the scrolls to ensure the improved adhesion between the highly conductive hybrid films and the patterned substrate.We attribute the increased sensitivity(3.5 k Pa^-1),fast response time(<50 ms),and the good reproducibility during 1000 loading-unloading cycles of the pressure sensor to the synergistic effect between the 1D scrolls and 2D graphene films.Test results demonstrate that these sensors are promising for electronic skins and motion detection applications.
基金the National Natural Science Foundation of China(21503064)Anhui Provincial Natural Science Foundation for support(1508085QE103)+3 种基金the Ministry of Science and Technology of China(2015CB351903)the 100 Talents Program of the Chinese Academy of Sciences,USTC Startupthe Fundamental Research Funds for the Central Universities(WK2060140003)iChEM
文摘Graphene sponge(GS) with microscale size, high mechanical elasticity and electrical conductivity has attracted great interest as a sensing material for piezoresistive pressure sensor. However, GS offering a lower limit of pressure detection with high gauge factor, which is closely dependent on the mechanical and electrical properties and determined by the fabrication process, is still demanded. Here, γ-ray irradiation reduced GS is reported to possess a gauge factor of 1.03 kPa^–1 with pressure detection limit of 10 Pa and high stress retention of 76% after 800 cycles of compressing/relaxation at strain of 50%. Compared with the carbon nanotube(CNT) reinforced GS, the improved lower limit of pressure detection and gauge factor of the GS prepared by γ-ray irradiation is due to the low compression stress(0.9 kPa at stain of 50%). These excellent physical properties of the GS are ascribed to the mild,residual free, and controllable reduction process offered by γ-ray irradiation.