为解决传统机器学习中训练集(源域)与测试集(目标域)数据分布不一致导致分类准确率较低的问题,提出一种基于半监督判别分析和CDMD的领域自适应算法(SDA-CDMD)。首先,使用半监督判别分析(SDA)进行数据降维,保留了映射到低维子空间中数据...为解决传统机器学习中训练集(源域)与测试集(目标域)数据分布不一致导致分类准确率较低的问题,提出一种基于半监督判别分析和CDMD的领域自适应算法(SDA-CDMD)。首先,使用半监督判别分析(SDA)进行数据降维,保留了映射到低维子空间中数据的几何结构信息。其次,提出一种衡量两个域之间分布差异的度量准则:跨域均值差异(Cross-Domain Mean Discrepancy,CDMD)。最后,将SDA与CDMD结合,将两个域投影到同一子空间中,减少两个域之间的分布差异。在手写数字图像和计算机视觉数据集上进行的大量实验结果表明,所提算法优于传统的领域自适应方法,验证了其有效性。展开更多
文摘为解决传统机器学习中训练集(源域)与测试集(目标域)数据分布不一致导致分类准确率较低的问题,提出一种基于半监督判别分析和CDMD的领域自适应算法(SDA-CDMD)。首先,使用半监督判别分析(SDA)进行数据降维,保留了映射到低维子空间中数据的几何结构信息。其次,提出一种衡量两个域之间分布差异的度量准则:跨域均值差异(Cross-Domain Mean Discrepancy,CDMD)。最后,将SDA与CDMD结合,将两个域投影到同一子空间中,减少两个域之间的分布差异。在手写数字图像和计算机视觉数据集上进行的大量实验结果表明,所提算法优于传统的领域自适应方法,验证了其有效性。